Flash Attention 3在NVIDIA H20 Hopper上的性能基准测试分析
2025-05-13 05:09:30作者:曹令琨Iris
引言
本文深入分析了Flash Attention 3在NVIDIA H20 Hopper GPU上的性能表现。H20作为Hopper架构的专业计算卡,具有4TB/s的DRAM带宽和148 TFLOPS(FP16张量核心)的理论计算能力。我们将通过详细的基准测试数据,探讨Flash Attention 3在不同序列长度和配置下的实际性能表现,并与Flash Attention 2以及NVIDIA CuDNN实现进行对比。
测试环境与方法
测试使用了标准的Flash Attention 3基准测试脚本,主要考察了以下配置:
- 前向传播模式
- 批量大小为2
- 头维度为64和128
- 序列长度从2048到16384
- 因果和非因果注意力模式
性能测试结果
短序列性能(seqlen=2048)
在2048的短序列长度下,Flash Attention 3表现出色:
- 非因果模式下,头维度64时达到120.1 TFLOPS
- 因果模式下,头维度64时达到100.3 TFLOPS
- 头维度增加到128时,性能进一步提升至126.2 TFLOPS(非因果)和107.8 TFLOPS(因果)
与Flash Attention 2相比,Flash Attention 3在短序列场景下实现了显著的性能提升,特别是在头维度较大的情况下。
长序列性能(seqlen=16384)
在16384的长序列测试中:
- 非因果模式下,头维度64时Flash Attention 3达到139.9 TFLOPS
- 因果模式下性能为134.7 TFLOPS
- 与CuDNN实现相比,Flash Attention 3性能相当甚至略有优势
矩阵乘法基准对比
为了深入理解性能瓶颈,我们还进行了纯矩阵乘法的基准测试:
- 8192x8192x8192矩阵乘法达到约140 TFLOPS
- 这表明Flash Attention 3在长序列场景下已经接近理论极限
- 短序列场景下仍有约10 TFLOPS的潜在优化空间
性能分析与优化建议
-
短序列优化:对于2048长度的序列,Flash Attention 3仍有约10 TFLOPS的性能提升空间,可能的优化方向包括:
- 减少内核启动开销
- 优化共享内存使用
- 改进线程块调度
-
头维度影响:测试显示较大的头维度(128 vs 64)能带来更好的性能表现,这在实际模型设计中值得考虑。
-
因果注意力优化:因果模式下的性能损失约为20-25%,这与理论预期相符,但仍有优化空间。
结论
Flash Attention 3在NVIDIA H20 Hopper上表现出色,特别是在长序列场景下已经接近理论性能极限。对于短序列场景,虽然性能已经相当优秀,但仍存在一定的优化空间。这些基准测试结果为深度学习从业者在Hopper架构上部署注意力机制提供了有价值的参考。
未来的工作可以进一步探索:
- 混合精度计算的优化潜力
- 不同批量大小下的性能表现
- 更复杂注意力模式的支持与优化
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1