Flannel网络插件初始化问题分析与解决方案
问题背景
在Kubernetes集群部署过程中,使用Flannel作为CNI网络插件时,节点状态可能持续显示为"Not Ready",并伴随错误信息"container runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:Network plugin returns error: cni plugin not initialized"。这个问题通常发生在集群初始化阶段,影响Pod的正常调度和运行。
问题现象
当出现此问题时,通过kubectl describe node命令查看节点状态,会观察到以下关键信息:
- 节点Conditions部分显示Ready状态为False
- 错误信息明确指出CNI插件未初始化
- 核心DNS等系统Pod处于Pending状态
- kubelet日志中频繁报错"cni plugin not initialized"
根本原因分析
经过深入排查,这个问题通常由以下几个因素导致:
-
CNI插件未正确安装:虽然Flannel的DaemonSet已部署,但基础的CNI插件二进制文件可能缺失或安装位置不正确。
-
配置顺序问题:在集群初始化(kubeadm init)后未及时部署网络插件,或者在错误的时机执行了网络插件部署。
-
文件权限问题:CNI插件二进制文件或配置文件权限不足,导致kubelet无法正常加载。
-
版本兼容性问题:Flannel版本与Kubernetes版本可能存在兼容性问题。
解决方案
1. 确保CNI插件正确安装
在部署Flannel之前,必须确保基础CNI插件已正确安装:
mkdir -p /opt/cni/bin
wget https://github.com/containernetworking/plugins/releases/download/v1.5.0/cni-plugins-linux-arm64-v1.5.0.tgz
tar -C /opt/cni/bin -xzf cni-plugins-linux-arm64-v1.5.0.tgz
验证安装:
ls -l /opt/cni/bin/
2. 正确的部署顺序
正确的集群初始化流程应为:
- 执行kubeadm init初始化集群
- 配置kubectl访问权限
- 部署Flannel网络插件
- 加入其他节点
关键命令示例:
kubeadm init --pod-network-cidr=10.244.0.0/16
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
kubectl apply -f kube-flannel.yml
3. 检查文件权限
确保CNI相关目录和文件具有适当权限:
chmod 755 /opt/cni/bin/*
chmod 644 /etc/cni/net.d/*
4. 版本兼容性验证
确保使用的Flannel版本与Kubernetes版本兼容。对于Kubernetes 1.28+,推荐使用Flannel v0.25.0及以上版本。
深入排查步骤
如果问题仍然存在,可以进行以下深入排查:
- 检查Flannel Pod日志:
kubectl logs -n kube-flannel <flannel-pod-name>
- 验证CNI配置文件:
cat /etc/cni/net.d/10-flannel.conflist
- 检查kubelet日志:
journalctl -u kubelet -n 100 --no-pager
- 验证网络插件目录:
ls -l /opt/cni/bin/ /etc/cni/net.d/
预防措施
为避免类似问题再次发生,建议:
- 在集群初始化前预先安装CNI插件
- 使用自动化工具管理集群部署流程
- 记录详细的部署日志和时间戳
- 定期检查CNI插件版本与Kubernetes版本的兼容性矩阵
总结
Flannel网络插件初始化失败是Kubernetes集群部署过程中的常见问题,通常由CNI插件缺失或配置不当引起。通过遵循正确的部署顺序、验证文件权限和版本兼容性,可以有效地解决这一问题。对于生产环境,建议使用经过验证的部署脚本和版本组合,以确保集群网络的稳定性和可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00