Apache Fury高效序列化基础数据类型实战指南
2025-06-25 07:25:14作者:傅爽业Veleda
背景与需求场景
在现代分布式系统开发中,特别是在游戏服务器(如MMO)和高性能网络服务领域,序列化性能往往是系统瓶颈之一。传统Java序列化方式(如DataOutputStream)虽然简单易用,但在处理海量小数据包时性能表现不佳。Apache Fury作为新一代高性能序列化框架,针对这类场景提供了显著的性能优化。
传统序列化方式分析
以典型游戏服务器场景为例,开发者通常需要序列化以下数据类型:
- 枚举值(转换为ordinal数值)
- 字符串(如GUID)
- 基本数据类型(byte/int/float等)
传统实现通常采用DataOutputStream:
try (ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);
DataOutputStream dos = new DataOutputStream(baos)) {
dos.writeByte(method.ordinal());
dos.writeUTF(getId());
return baos.toByteArray();
}
这种方式存在两个主要性能问题:
- 每次序列化都需要创建多个流对象
- 底层实现存在冗余的类型转换
Apache Fury优化方案
方案一:对象数组序列化
对于简单场景,可以直接将待序列化对象放入数组:
Fury fury = Fury.builder().build();
byte[] bytes = fury.serialize(new Object[]{
SerialisationMethod.Client.PlayerCharacter.ordinal(),
getId()
});
优势:
- 代码简洁,单行完成序列化
- 自动处理不同类型的数据
- 内部使用高效的内存布局
方案二:内存缓冲直接操作
对于高性能要求的场景,可以使用MemoryBuffer直接操作:
Fury fury = Fury.builder().build();
MemoryBuffer buffer = new MemoryBuffer(1024);
MemoryBufferObjectOutput out = new MemoryBufferObjectOutput(fury, buffer);
try {
out.writeByte(method.ordinal());
out.writeUTF(getId());
byte[] result = buffer.getBytes(0, buffer.writerIndex());
return result;
} finally {
buffer.writerIndex(0); // 重置缓冲区复用
}
优势:
- 缓冲区可复用,减少GC压力
- 细粒度控制写入过程
- 避免临时对象创建
性能对比建议
在实际应用中,建议根据具体场景进行选择:
- 代码可读性优先:选择对象数组方式
- 高性能需求:选择内存缓冲直接操作
- 高频小数据包:考虑使用Fury的对象池和缓冲区复用机制
深入原理
Apache Fury的高性能来源于:
- 高效内存操作:直接操作内存缓冲区
- 类型推断:避免运行时类型检查
- 内存池化:减少对象创建开销
- 自适应编码:根据数据类型选择最优编码方案
对于基本数据类型序列化,Fury会:
- 使用原生字节序处理数值类型
- 对字符串采用UTF-8变长编码
- 自动处理null值情况
最佳实践
- 对于固定格式的消息,建议预注册类型信息
- 设置合理的初始缓冲区大小(如示例中的1024)
- 在高并发场景使用ThreadLocal缓存Fury实例
- 考虑使用Fury的异步序列化接口
通过合理使用Apache Fury,开发者可以在保持代码简洁性的同时,获得接近原生操作的序列化性能,特别适合游戏服务器、金融交易等对延迟敏感的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19