Chroma 开源项目使用指南
2024-09-13 12:50:50作者:舒璇辛Bertina
1. 项目介绍
Chroma 是一个开源的 AI 应用数据库,旨在为开发者提供一个集成的平台,用于存储、搜索和管理 AI 相关的数据。Chroma 支持嵌入向量搜索、文档存储、全文搜索、元数据过滤等功能,使得开发者能够更高效地构建和部署 AI 应用。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
2.2 安装 Chroma
首先,克隆 Chroma 的 GitHub 仓库:
git clone https://github.com/generatebio/chroma.git
cd chroma
接下来,安装项目依赖:
pip install -r requirements.txt
2.3 启动 Chroma
运行以下命令启动 Chroma:
python main.py
默认情况下,Chroma 会在 http://localhost:8000 启动服务。
3. 应用案例和最佳实践
3.1 文本搜索
Chroma 提供了强大的全文搜索功能,可以用于构建文档搜索引擎。以下是一个简单的示例代码:
from chroma import Chroma
# 初始化 Chroma
chroma = Chroma()
# 添加文档
chroma.add_document("document_id_1", "这是一个示例文档。")
chroma.add_document("document_id_2", "这是另一个示例文档。")
# 搜索文档
results = chroma.search("示例")
for result in results:
print(result)
3.2 向量搜索
Chroma 支持嵌入向量搜索,适用于图像、文本等数据的相似性搜索。以下是一个简单的示例代码:
from chroma import Chroma
# 初始化 Chroma
chroma = Chroma()
# 添加向量
chroma.add_vector("vector_id_1", [0.1, 0.2, 0.3])
chroma.add_vector("vector_id_2", [0.4, 0.5, 0.6])
# 搜索相似向量
results = chroma.search_vector([0.1, 0.2, 0.3])
for result in results:
print(result)
4. 典型生态项目
4.1 Chroma + Elasticsearch
Chroma 可以与 Elasticsearch 结合使用,提供更强大的搜索和分析能力。通过将 Chroma 的数据导入到 Elasticsearch 中,可以实现更复杂的全文搜索和数据分析。
4.2 Chroma + TensorFlow
Chroma 可以与 TensorFlow 结合使用,用于存储和搜索训练好的模型。开发者可以将模型的嵌入向量存储在 Chroma 中,并通过 Chroma 进行相似性搜索,从而实现模型的快速检索和应用。
4.3 Chroma + Flask
Chroma 可以与 Flask 结合使用,构建基于 AI 的 Web 应用。通过将 Chroma 集成到 Flask 应用中,开发者可以轻松实现文档搜索、图像搜索等功能。
通过以上步骤,你可以快速上手 Chroma 开源项目,并将其应用于各种 AI 相关的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248