Expensify/App 9.1.64版本发布:性能优化与用户体验改进
Expensify是一款广受欢迎的开源费用管理应用程序,它帮助用户轻松跟踪和管理个人及企业开支。该应用提供了丰富的功能,包括费用报告、发票管理、团队协作等。最新发布的9.1.64版本带来了一系列重要的改进和修复,主要集中在性能优化、用户体验提升和功能完善三个方面。
性能优化改进
本次版本在性能方面做了多项优化,显著提升了应用的响应速度和流畅度。开发团队减少了PopoverWithMeasuredContent组件的重新测量频率,这一改动有效降低了界面渲染时的计算开销。同时,通过优化BaseSelectionList组件,解决了之前存在的性能回归问题。
在数据处理方面,团队改进了报告替换机制(set replace report),减少了不必要的状态更新和数据传输。此外,还移除了getReportNameValuePairs的冗余调用,这一改动在检查聊天室描述是否可编辑时特别有效,减轻了系统负担。
用户体验增强
9.1.64版本对用户界面进行了多处细致调整。修复了分享包含空格文件名时的问题,确保文件共享功能更加可靠。改进了工作流审批区域的底部填充,解决了之前文字被截断的问题。
登录页面UI进行了重新设计,优化了离线状态下的Google登录体验。新增了多扫描教育弹出窗口,帮助用户更好地理解和使用扫描功能。对于时区处理也更加健壮,修复了因不支持时区值导致的崩溃问题。
功能完善与问题修复
在功能方面,本次更新增加了从报告中取消报告交易的能力,为用户提供了更灵活的操作选择。改进了银行账户工作流,将地址搜索限制为美国地区,提高了地址匹配的准确性。
安全方面,新增了锁定账户模态框,当账户被锁定时能够优雅地处理相关操作。修复了双重认证页面可能出现的无限循环问题,增强了账户安全性。
对于企业用户,修复了审批工作流变更后审批按钮不可见的问题,确保了审批流程的顺畅进行。同时改进了商户名称设置,防止通过输入"(none)"将商户名称设置为空值的情况。
国际化与本地化
开发团队持续改进应用的国际化支持。修复了西班牙语中无效商户的翻译问题,确保错误信息准确传达。优化了银行账户删除时的错误消息翻译,提升了非英语用户的使用体验。
技术架构调整
在底层架构方面,团队开始弃用getPolicy方法,这是向更现代化架构演进的一部分。重新引入了"Improve HybridApp initialProps"的改进,增强了混合应用的初始属性处理能力。
测试基础设施也有所增强,更新了@testing-library/react-native版本,为即将到来的React Native 0.79升级做准备。这些底层改进虽然用户不可见,但为应用的长期稳定性和可维护性奠定了基础。
总结
Expensify/App 9.1.64版本通过一系列精心设计的改进,在性能、用户体验和功能完整性方面都有显著提升。这些变化体现了开发团队对细节的关注和对用户反馈的积极响应。随着这些改进的推出,用户可以期待更流畅、更可靠的费用管理体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00