Apache APISIX中利用Lua插件实现Redis存储响应体的实践
2025-05-15 10:13:31作者:廉皓灿Ida
背景介绍
在API网关开发中,我们经常需要处理后端服务的响应数据,并将其存储到缓存系统中。Apache APISIX作为一款高性能的API网关,提供了强大的Lua插件机制,允许开发者灵活地处理请求和响应。本文将介绍如何在APISIX中实现一个将SOAP响应中的特定数据存储到Redis的解决方案。
技术挑战
在处理SOAP服务响应时,我们遇到了几个关键挑战:
- 需要在body_filter阶段获取完整的响应体内容
- 由于Nginx的限制,无法在body_filter阶段直接进行Redis操作
- 需要跨插件共享解析后的数据
- 对后端服务无修改权限,所有操作必须在网关层面完成
解决方案设计
第一阶段:响应体解析
我们首先创建一个专门用于解析响应体的插件,该插件工作在body_filter阶段:
local function extract_session_id(xml_string)
local pattern = "<GetSessionIdResponse[^>]*>(.-)</GetSessionIdResponse>"
local session_id = string.match(xml_string, pattern)
if session_id then
ngx.log(ngx.INFO, "Session ID: ", session_id)
return session_id
else
ngx.log(ngx.ERR, "Failed to extract Session ID from XML response")
return nil
end
end
function _M.body_filter(conf, ctx)
local body = core.response.hold_body_chunk(ctx)
if not body then
return core.log.warn("failed to hold response body chunk")
end
local sessionid = extract_session_id(body)
ctx.sessionid = sessionid
end
这个插件通过正则表达式从SOAP响应中提取SessionID,并将其存储在请求上下文中。
第二阶段:Redis存储
由于无法在body_filter阶段直接操作Redis,我们采用以下策略:
- 将Redis操作移至log阶段
- 使用ngx.timer.at创建异步任务,避免阻塞主请求流程
function _M.log(conf, ctx)
local function redis_client()
local red = redis_new()
local timeout = 1000 -- 1秒超时
red:set_timeouts(timeout, timeout, timeout)
local sock_opts = {
ssl = conf.ssl,
ssl_verify = conf.ssl_verify
}
local ok, err = red:connect("host.docker.internal", 6379, sock_opts)
if not ok then
return false, err
end
return red, nil
end
local function save_redis()
local redis_cli = redis_client()
redis_cli:set(clientId, bodySession)
redis_cli:expire(clientId, 50)
end
ngx.timer.at(0, save_redis)
end
关键技术点
1. 请求上下文共享
APISIX的ctx对象可以在同一请求的不同阶段和不同插件间共享数据。我们利用这一特性,在body_filter阶段将解析出的SessionID存储在ctx中,然后在log阶段取出使用。
2. 异步Redis操作
使用ngx.timer.at可以将Redis操作异步化,避免阻塞请求处理流程。这种方式虽然不能保证100%的存储成功率(如网关崩溃时可能丢失数据),但对于大多数场景已经足够。
3. 响应体处理
在body_filter阶段,我们需要使用core.response.hold_body_chunk来获取完整的响应体内容。需要注意的是,这个阶段可能被多次调用,因此需要正确处理分块响应。
性能考量
- 连接池管理:Redis连接应该使用连接池,避免频繁创建和销毁连接
- 超时设置:合理设置Redis操作超时,防止长时间阻塞
- 错误处理:完善的错误处理和日志记录机制
- 资源限制:控制并发定时器数量,防止资源耗尽
扩展思考
这种模式不仅适用于Redis存储,还可以扩展到其他场景:
- 将响应数据写入Kafka等消息队列
- 实现响应数据的实时分析
- 构建API调用日志系统
- 实现响应缓存机制
总结
通过APISIX的插件机制,我们成功实现了在不修改后端服务的情况下,对SOAP响应进行解析并存储到Redis的功能。这种方案展示了APISIX在处理复杂API网关需求时的灵活性和强大能力。关键在于合理利用请求上下文共享数据和异步操作机制,既保证了功能实现,又确保了系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873