Apache APISIX中利用Lua插件实现Redis存储响应体的实践
2025-05-15 05:19:53作者:廉皓灿Ida
背景介绍
在API网关开发中,我们经常需要处理后端服务的响应数据,并将其存储到缓存系统中。Apache APISIX作为一款高性能的API网关,提供了强大的Lua插件机制,允许开发者灵活地处理请求和响应。本文将介绍如何在APISIX中实现一个将SOAP响应中的特定数据存储到Redis的解决方案。
技术挑战
在处理SOAP服务响应时,我们遇到了几个关键挑战:
- 需要在body_filter阶段获取完整的响应体内容
- 由于Nginx的限制,无法在body_filter阶段直接进行Redis操作
- 需要跨插件共享解析后的数据
- 对后端服务无修改权限,所有操作必须在网关层面完成
解决方案设计
第一阶段:响应体解析
我们首先创建一个专门用于解析响应体的插件,该插件工作在body_filter阶段:
local function extract_session_id(xml_string)
local pattern = "<GetSessionIdResponse[^>]*>(.-)</GetSessionIdResponse>"
local session_id = string.match(xml_string, pattern)
if session_id then
ngx.log(ngx.INFO, "Session ID: ", session_id)
return session_id
else
ngx.log(ngx.ERR, "Failed to extract Session ID from XML response")
return nil
end
end
function _M.body_filter(conf, ctx)
local body = core.response.hold_body_chunk(ctx)
if not body then
return core.log.warn("failed to hold response body chunk")
end
local sessionid = extract_session_id(body)
ctx.sessionid = sessionid
end
这个插件通过正则表达式从SOAP响应中提取SessionID,并将其存储在请求上下文中。
第二阶段:Redis存储
由于无法在body_filter阶段直接操作Redis,我们采用以下策略:
- 将Redis操作移至log阶段
- 使用ngx.timer.at创建异步任务,避免阻塞主请求流程
function _M.log(conf, ctx)
local function redis_client()
local red = redis_new()
local timeout = 1000 -- 1秒超时
red:set_timeouts(timeout, timeout, timeout)
local sock_opts = {
ssl = conf.ssl,
ssl_verify = conf.ssl_verify
}
local ok, err = red:connect("host.docker.internal", 6379, sock_opts)
if not ok then
return false, err
end
return red, nil
end
local function save_redis()
local redis_cli = redis_client()
redis_cli:set(clientId, bodySession)
redis_cli:expire(clientId, 50)
end
ngx.timer.at(0, save_redis)
end
关键技术点
1. 请求上下文共享
APISIX的ctx对象可以在同一请求的不同阶段和不同插件间共享数据。我们利用这一特性,在body_filter阶段将解析出的SessionID存储在ctx中,然后在log阶段取出使用。
2. 异步Redis操作
使用ngx.timer.at可以将Redis操作异步化,避免阻塞请求处理流程。这种方式虽然不能保证100%的存储成功率(如网关崩溃时可能丢失数据),但对于大多数场景已经足够。
3. 响应体处理
在body_filter阶段,我们需要使用core.response.hold_body_chunk来获取完整的响应体内容。需要注意的是,这个阶段可能被多次调用,因此需要正确处理分块响应。
性能考量
- 连接池管理:Redis连接应该使用连接池,避免频繁创建和销毁连接
- 超时设置:合理设置Redis操作超时,防止长时间阻塞
- 错误处理:完善的错误处理和日志记录机制
- 资源限制:控制并发定时器数量,防止资源耗尽
扩展思考
这种模式不仅适用于Redis存储,还可以扩展到其他场景:
- 将响应数据写入Kafka等消息队列
- 实现响应数据的实时分析
- 构建API调用日志系统
- 实现响应缓存机制
总结
通过APISIX的插件机制,我们成功实现了在不修改后端服务的情况下,对SOAP响应进行解析并存储到Redis的功能。这种方案展示了APISIX在处理复杂API网关需求时的灵活性和强大能力。关键在于合理利用请求上下文共享数据和异步操作机制,既保证了功能实现,又确保了系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882