Ollama项目GPU资源分配优化指南
2025-04-28 05:17:11作者:牧宁李
在运行大型语言模型时,如何合理分配GPU资源是提升性能的关键因素。本文将详细介绍在Ollama项目中优化GPU资源分配的技术方案。
GPU资源分配现状分析
当用户运行Ollama项目中的llama3.3模型时,系统监控显示GPU利用率仅为7%,而CPU利用率高达93%。这种资源分配不均衡会导致模型推理速度下降,影响用户体验。
核心优化参数解析
Ollama项目提供了num_gpu这一关键参数,它决定了模型层数在GPU上的分配比例。需要注意的是:
num_gpu参数并非指物理GPU数量,而是指定需要加载到GPU上的模型层数- 该参数值需要根据实际GPU显存容量进行调整
- 过高的设置可能导致CUDA内存不足(OOM)错误
优化实施步骤
第一步:创建模型配置文件
使用以下命令导出当前模型配置:
ollama show --modelfile llama3.3:latest > llama3.3-big
第二步:修改配置文件
在生成的配置文件中进行两项关键修改:
- 调整
FROM指令指向正确的模型源 - 添加GPU分配参数:
PARAMETER num_gpu 99
第三步:创建优化后的模型
执行以下命令创建优化版本:
ollama create -f llama3.3-big llama3.3-big
参数调优建议
对于70B参数规模的llama3.3模型,建议采用渐进式调优策略:
- 从较小数值(如40)开始尝试
- 逐步增加数值,同时监控GPU显存使用情况
- 当出现OOM错误时,适当降低数值
上下文长度注意事项
如果同时设置了较大的上下文长度(如8192),需要特别注意:
- 长上下文会显著增加显存需求
- 可能需要降低
num_gpu值以平衡资源 - 建议根据实际应用场景调整这两个参数
性能监控方法
优化过程中,建议使用以下工具监控资源使用情况:
nvidia-smi:查看GPU显存占用情况nvtop:图形化监控GPU/CPU使用率- Ollama自带的
ollama ps命令
通过以上优化方法,用户可以显著提升Ollama项目中大型语言模型的推理性能,实现更高效的GPU资源利用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135