Ollama项目GPU资源分配优化指南
2025-04-28 05:08:17作者:牧宁李
在运行大型语言模型时,如何合理分配GPU资源是提升性能的关键因素。本文将详细介绍在Ollama项目中优化GPU资源分配的技术方案。
GPU资源分配现状分析
当用户运行Ollama项目中的llama3.3模型时,系统监控显示GPU利用率仅为7%,而CPU利用率高达93%。这种资源分配不均衡会导致模型推理速度下降,影响用户体验。
核心优化参数解析
Ollama项目提供了num_gpu这一关键参数,它决定了模型层数在GPU上的分配比例。需要注意的是:
num_gpu参数并非指物理GPU数量,而是指定需要加载到GPU上的模型层数- 该参数值需要根据实际GPU显存容量进行调整
- 过高的设置可能导致CUDA内存不足(OOM)错误
优化实施步骤
第一步:创建模型配置文件
使用以下命令导出当前模型配置:
ollama show --modelfile llama3.3:latest > llama3.3-big
第二步:修改配置文件
在生成的配置文件中进行两项关键修改:
- 调整
FROM指令指向正确的模型源 - 添加GPU分配参数:
PARAMETER num_gpu 99
第三步:创建优化后的模型
执行以下命令创建优化版本:
ollama create -f llama3.3-big llama3.3-big
参数调优建议
对于70B参数规模的llama3.3模型,建议采用渐进式调优策略:
- 从较小数值(如40)开始尝试
- 逐步增加数值,同时监控GPU显存使用情况
- 当出现OOM错误时,适当降低数值
上下文长度注意事项
如果同时设置了较大的上下文长度(如8192),需要特别注意:
- 长上下文会显著增加显存需求
- 可能需要降低
num_gpu值以平衡资源 - 建议根据实际应用场景调整这两个参数
性能监控方法
优化过程中,建议使用以下工具监控资源使用情况:
nvidia-smi:查看GPU显存占用情况nvtop:图形化监控GPU/CPU使用率- Ollama自带的
ollama ps命令
通过以上优化方法,用户可以显著提升Ollama项目中大型语言模型的推理性能,实现更高效的GPU资源利用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210