首页
/ 政策梯度算法实现:pg_travel 项目指南

政策梯度算法实现:pg_travel 项目指南

2024-09-27 12:50:09作者:郜逊炳

项目概述

pg_travel 是一个基于 PyTorch v0.4.0 的开源项目,专注于实现典型政策梯度(Policy Gradient, PG)算法,包括 REINFORCE、自然策略梯度(NPG)、信任区域策略优化(TRPO)和近端策略优化(PPO)。此项目提供了在 MuJoCo 和 Unity ML-Agents 环境中训练智能体的实现案例。

目录结构及介绍

项目的基本结构如下:

  • mujoco: 包含使用MuJoCo环境的代码,如训练脚本main.py,超参数配置hparams.py以及模型保存路径save_model.
  • unity: 与Unity ML-Agents集成的部分,用于多智能体训练,同样有main.py来执行训练或测试,并有自定义的环境。
  • logs: 训练日志存放位置,通过TensorboardX可视化训练过程。
  • LICENSE: 开源许可协议,遵循MIT License。
  • README.md: 项目简介和快速入门指导。
  • hparams.py: 超参数设置文件,允许用户调整学习率、奖励折扣等关键参数。

启动文件介绍

MuJoCo部分

  • mujoco/main.py: 主要的训练脚本,支持不同算法和环境的选择。通过命令行参数指定算法(默认PPO),环境(如Hopper-v2),是否渲染训练过程,以及加载先前训练的模型进行继续训练或测试等。

Unity ML-Agents部分

  • unity/main.py: 对应于Unity环境下的训练和测试脚本,设计为支持多智能体训练。提供对预建Walker环境的训练,配置环境(Plane和Curved),并能从保存的模型继续训练或仅测试模型。

配置文件介绍

  • hparams.py: 此文件是项目的关键配置所在,它包含了所有可调节的超参数。例如,学习率、奖励折扣因子(gamma)、批处理大小、记忆缓冲区大小等。开发者可以根据实验需求调整这些参数以优化算法表现。

    用户可以在此文件中寻找特定算法的配置选项,如优化器类型、策略网络架构细节等,以适应不同的实验场景或性能调优需求。

为了启动项目中的某个部分,用户需依据命令行指示操作,比如对于MuJoCo环境的简单训练,可以在终端输入以下命令(以PPO为例):

python mujoco/main.py --algorithm PPO --env Hopper-v2

对于复杂的配置更改或特定研究目的,直接编辑hparams.py后再运行相关脚本即可。

此教程仅为概览,具体操作时请参考项目中的详细文档和注释,确保理解每个参数的意义和作用,以便有效利用此框架进行深度强化学习的研究和应用。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4