NREL SAM 开源项目教程
1. 项目介绍
NREL SAM(System Advisor Model)是由美国国家可再生能源实验室(NREL)开发的一个开源软件工具,旨在帮助用户评估各种可再生能源和能源存储系统的经济性和性能。SAM 支持多种能源技术,包括太阳能光伏、太阳能热发电、风能、地热能、生物质能和电池储能系统。通过 SAM,用户可以模拟不同能源系统的运行情况,优化系统设计,并进行经济性分析。
2. 项目快速启动
2.1 环境准备
在开始使用 SAM 之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- Git
2.2 安装步骤
-
克隆项目仓库
打开终端并运行以下命令以克隆 SAM 项目仓库:
git clone https://github.com/NREL/SAM.git -
安装依赖
进入项目目录并安装所需的 Python 依赖:
cd SAM pip install -r requirements.txt -
运行 SAM
安装完成后,您可以通过以下命令启动 SAM:
python sam_app.py
3. 应用案例和最佳实践
3.1 太阳能光伏系统评估
使用 SAM 评估一个 100 kW 的太阳能光伏系统。您可以输入系统的地理位置、组件规格和财务参数,SAM 将计算出系统的年发电量、投资回报率等关键指标。
3.2 风能系统优化
通过 SAM 模拟不同风力涡轮机的性能,优化风电场的布局和选型。SAM 提供了详细的风资源数据和涡轮机模型,帮助用户找到最佳的风能系统配置。
3.3 电池储能系统经济性分析
利用 SAM 分析电池储能系统在不同应用场景下的经济性。您可以输入电池的容量、充放电效率、寿命等参数,SAM 将计算出系统的成本效益和投资回收期。
4. 典型生态项目
4.1 PySAM
PySAM 是 SAM 的 Python 接口,允许用户通过编程方式访问 SAM 的核心功能。PySAM 提供了丰富的 API,支持用户自定义模拟和分析流程。
4.2 SAM-SDK
SAM-SDK 是 SAM 的软件开发工具包,提供了 C++ 和 Python 接口,方便开发者将 SAM 的功能集成到自己的应用程序中。
4.3 SAM-GUI
SAM-GUI 是 SAM 的图形用户界面,提供了直观的操作界面,适合不熟悉编程的用户使用。SAM-GUI 支持多种能源系统的模拟和分析。
通过以上模块的介绍和实践,您可以快速上手并充分利用 NREL SAM 开源项目进行能源系统的评估和优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00