NREL SAM 开源项目教程
1. 项目介绍
NREL SAM(System Advisor Model)是由美国国家可再生能源实验室(NREL)开发的一个开源软件工具,旨在帮助用户评估各种可再生能源和能源存储系统的经济性和性能。SAM 支持多种能源技术,包括太阳能光伏、太阳能热发电、风能、地热能、生物质能和电池储能系统。通过 SAM,用户可以模拟不同能源系统的运行情况,优化系统设计,并进行经济性分析。
2. 项目快速启动
2.1 环境准备
在开始使用 SAM 之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- Git
2.2 安装步骤
-
克隆项目仓库
打开终端并运行以下命令以克隆 SAM 项目仓库:
git clone https://github.com/NREL/SAM.git
-
安装依赖
进入项目目录并安装所需的 Python 依赖:
cd SAM pip install -r requirements.txt
-
运行 SAM
安装完成后,您可以通过以下命令启动 SAM:
python sam_app.py
3. 应用案例和最佳实践
3.1 太阳能光伏系统评估
使用 SAM 评估一个 100 kW 的太阳能光伏系统。您可以输入系统的地理位置、组件规格和财务参数,SAM 将计算出系统的年发电量、投资回报率等关键指标。
3.2 风能系统优化
通过 SAM 模拟不同风力涡轮机的性能,优化风电场的布局和选型。SAM 提供了详细的风资源数据和涡轮机模型,帮助用户找到最佳的风能系统配置。
3.3 电池储能系统经济性分析
利用 SAM 分析电池储能系统在不同应用场景下的经济性。您可以输入电池的容量、充放电效率、寿命等参数,SAM 将计算出系统的成本效益和投资回收期。
4. 典型生态项目
4.1 PySAM
PySAM 是 SAM 的 Python 接口,允许用户通过编程方式访问 SAM 的核心功能。PySAM 提供了丰富的 API,支持用户自定义模拟和分析流程。
4.2 SAM-SDK
SAM-SDK 是 SAM 的软件开发工具包,提供了 C++ 和 Python 接口,方便开发者将 SAM 的功能集成到自己的应用程序中。
4.3 SAM-GUI
SAM-GUI 是 SAM 的图形用户界面,提供了直观的操作界面,适合不熟悉编程的用户使用。SAM-GUI 支持多种能源系统的模拟和分析。
通过以上模块的介绍和实践,您可以快速上手并充分利用 NREL SAM 开源项目进行能源系统的评估和优化。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









