InvCompress 开源项目教程
2024-09-17 07:03:53作者:宣海椒Queenly
1. 项目介绍
InvCompress 是一个基于 PyTorch 的开源项目,旨在通过增强的可逆编码网络(Invertible Encoding Network)来改进图像压缩技术。该项目在 ACM Multimedia 2021 会议上被选为口头报告(Oral),并展示了其在图像压缩领域的显著进展。InvCompress 通过使用可逆神经网络(INNs)来大幅减少信息损失问题,从而实现更好的图像压缩效果。
主要特点
- 可逆编码网络:采用可逆神经网络来构建图像空间与潜在特征空间之间的转换,减少信息损失。
- 注意力通道压缩层:提出了一种注意力通道压缩层,以灵活调整特征维度,降低比特率。
- 特征增强模块:通过相同分辨率的变换和残差连接,提升网络的非线性表示能力。
2. 项目快速启动
环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch
- CompressAI
安装步骤
-
克隆项目仓库:
git clone https://github.com/xyq7/InvCompress.git cd InvCompress/codes/
-
创建并激活 Conda 环境:
conda create -n invcomp python=3.7 conda activate invcomp
-
安装依赖包:
pip install -U pip && pip install -e . conda install -c conda-forge tensorboard
快速运行
以下是一个简单的评估示例,使用预训练模型对图像进行压缩和解压缩:
import torch
from compressai.utils import eval_model
# 设置评估数据目录
eval_data_dir = '/path/to/your/data'
# 评估模型
eval_model(checkpoint=eval_data_dir, model='invcompress', exp_name='exp_01_mse_q1', save_dir='/path/to/save/results')
3. 应用案例和最佳实践
应用案例
InvCompress 可以广泛应用于需要高效图像压缩的场景,如:
- 医学影像:在保持图像质量的前提下,减少存储和传输成本。
- 视频监控:实时压缩监控视频,减少带宽占用。
- 移动设备:在资源受限的设备上,实现高效的图像压缩。
最佳实践
- 数据预处理:在训练前对数据进行适当的预处理,如归一化和数据增强。
- 超参数调优:根据具体应用场景调整训练参数,如学习率、批量大小和损失函数。
- 模型评估:使用多个数据集进行模型评估,确保其在不同场景下的泛化能力。
4. 典型生态项目
CompressAI
CompressAI 是一个用于图像和视频压缩的 PyTorch 库,提供了多种先进的压缩模型和工具。InvCompress 基于 CompressAI 构建,利用其强大的功能和灵活性。
Invertible-Image-Rescaling
这是一个与 InvCompress 相关的项目,专注于图像缩放的可逆神经网络。它与 InvCompress 共享一些核心技术,如可逆神经网络和特征增强模块。
通过结合这些生态项目,可以进一步扩展 InvCompress 的功能和应用范围,提升其在图像压缩领域的性能和效率。
热门项目推荐
相关项目推荐
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madong
基于Webman的权限管理系统
PHP
4
0
cool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2