InvCompress 开源项目教程
2024-09-17 17:56:25作者:宣海椒Queenly
1. 项目介绍
InvCompress 是一个基于 PyTorch 的开源项目,旨在通过增强的可逆编码网络(Invertible Encoding Network)来改进图像压缩技术。该项目在 ACM Multimedia 2021 会议上被选为口头报告(Oral),并展示了其在图像压缩领域的显著进展。InvCompress 通过使用可逆神经网络(INNs)来大幅减少信息损失问题,从而实现更好的图像压缩效果。
主要特点
- 可逆编码网络:采用可逆神经网络来构建图像空间与潜在特征空间之间的转换,减少信息损失。
- 注意力通道压缩层:提出了一种注意力通道压缩层,以灵活调整特征维度,降低比特率。
- 特征增强模块:通过相同分辨率的变换和残差连接,提升网络的非线性表示能力。
2. 项目快速启动
环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch
- CompressAI
安装步骤
-
克隆项目仓库:
git clone https://github.com/xyq7/InvCompress.git cd InvCompress/codes/
-
创建并激活 Conda 环境:
conda create -n invcomp python=3.7 conda activate invcomp
-
安装依赖包:
pip install -U pip && pip install -e . conda install -c conda-forge tensorboard
快速运行
以下是一个简单的评估示例,使用预训练模型对图像进行压缩和解压缩:
import torch
from compressai.utils import eval_model
# 设置评估数据目录
eval_data_dir = '/path/to/your/data'
# 评估模型
eval_model(checkpoint=eval_data_dir, model='invcompress', exp_name='exp_01_mse_q1', save_dir='/path/to/save/results')
3. 应用案例和最佳实践
应用案例
InvCompress 可以广泛应用于需要高效图像压缩的场景,如:
- 医学影像:在保持图像质量的前提下,减少存储和传输成本。
- 视频监控:实时压缩监控视频,减少带宽占用。
- 移动设备:在资源受限的设备上,实现高效的图像压缩。
最佳实践
- 数据预处理:在训练前对数据进行适当的预处理,如归一化和数据增强。
- 超参数调优:根据具体应用场景调整训练参数,如学习率、批量大小和损失函数。
- 模型评估:使用多个数据集进行模型评估,确保其在不同场景下的泛化能力。
4. 典型生态项目
CompressAI
CompressAI 是一个用于图像和视频压缩的 PyTorch 库,提供了多种先进的压缩模型和工具。InvCompress 基于 CompressAI 构建,利用其强大的功能和灵活性。
Invertible-Image-Rescaling
这是一个与 InvCompress 相关的项目,专注于图像缩放的可逆神经网络。它与 InvCompress 共享一些核心技术,如可逆神经网络和特征增强模块。
通过结合这些生态项目,可以进一步扩展 InvCompress 的功能和应用范围,提升其在图像压缩领域的性能和效率。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5