深入理解Ngneat/Elf中联合类型状态的处理问题
在Ngneat/Elf状态管理库中,当开发者尝试创建一个包含联合类型(Union Type)的store时,会遇到类型推断为never
的问题。这个问题源于库内部对状态类型的处理方式。
问题背景
在TypeScript中,联合类型表示一个值可以是几种类型之一。例如,我们可以定义一个Shape
类型,它可以是Circle
或Square
:
type Circle = { kind: "CIRCLE"; diameter: number };
type Square = { kind: "SQUARE"; edge: number };
type Shape = Circle | Square;
当开发者尝试在Ngneat/Elf中创建一个包含这种联合类型的store时:
const store = createStore(
{ name: "people" },
withProps<Shape>({ kind: "CIRCLE", diameter: 2 })
);
期望store的状态类型应该是Shape
,但实际上却被推断为never
类型,导致后续无法正常更新store。
问题根源
这个问题的根本原因在于Ngneat/Elf内部处理多个状态片段的方式。库的设计初衷是将多个状态片段合并为一个整体状态,采用类型交叉(Intersection)的方式。
具体来说,当处理状态时:
- 首先将所有状态片段转换为联合类型
- 然后使用
UnionToIntersection
工具类型将联合类型转换为交叉类型
对于普通类型,这种转换没有问题。但对于联合类型,如Circle | Square
,转换为交叉类型Circle & Square
后,由于这两种类型没有共同属性,结果就变成了never
类型。
解决方案
要解决这个问题,需要改进类型合并的方式。可以采用递归类型推断和可变元组类型来直接计算状态的交叉类型,而不是先转换为联合类型再转换为交叉类型。
改进后的类型合并方式应该能够:
- 正确处理联合类型的状态
- 保持类型安全
- 确保手动指定的键(如'props'和'config')与
PropsFactory
类型的键同步
实际影响
这个问题会影响那些需要在store中使用联合类型的开发者。例如,在处理具有不同形态的数据时(如不同的图形类型、不同的API响应格式等),开发者可能希望store能够容纳这些不同的类型。
最佳实践
在使用Ngneat/Elf时,如果需要处理联合类型的状态,可以考虑:
- 使用最新版本的库,其中已经修复了这个问题
- 如果暂时无法升级,可以将联合类型包装在一个对象中
- 明确指定store的完整类型,避免依赖类型推断
总结
Ngneat/Elf作为一个强大的状态管理库,在处理复杂类型时可能会遇到一些类型推断的边界情况。理解这些问题的根源有助于开发者更好地使用这个库,并在遇到类似问题时能够快速找到解决方案。
对于库的维护者来说,持续改进类型系统,特别是处理复杂类型场景的能力,将大大提升开发者的使用体验。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









