Jupyter Notebook扩展项目教程
1. 项目介绍
jupyter_contrib_nbextensions 是一个为 Jupyter Notebook 提供各种扩展功能的集合。这些扩展主要通过 JavaScript 实现,能够为 Jupyter Notebook 添加丰富的功能,如代码折叠、目录生成、LaTeX 公式编辑等。该项目由一个独立的用户和开发者团队维护,与 IPython/Jupyter 官方团队没有直接关联。
2. 项目快速启动
2.1 安装 Python 包
首先,需要安装 jupyter_contrib_nbextensions 的 Python 包。可以通过 pip 或 conda 进行安装。
使用 pip 安装
pip install jupyter_contrib_nbextensions
使用 conda 安装
conda install -c conda-forge jupyter_contrib_nbextensions
2.2 安装 JavaScript 和 CSS 文件
安装完 Python 包后,需要将扩展的 JavaScript 和 CSS 文件复制到 Jupyter 的数据目录中。
jupyter contrib nbextension install --user
2.3 启用扩展
安装完成后,可以通过以下命令启用特定的扩展。例如,启用代码折叠扩展:
jupyter nbextension enable codefolding/main
3. 应用案例和最佳实践
3.1 代码折叠
代码折叠扩展允许用户在 Jupyter Notebook 中折叠代码块,便于管理长代码段。启用后,代码块左侧会出现折叠按钮,点击即可折叠或展开代码。
3.2 目录生成
目录生成扩展可以自动生成 Notebook 的目录,方便用户快速导航。启用后,Notebook 顶部会出现一个目录按钮,点击即可查看和导航目录。
3.3 LaTeX 公式编辑
LaTeX 公式编辑扩展允许用户在 Jupyter Notebook 中直接编辑和预览 LaTeX 公式。启用后,用户可以在 Markdown 单元格中使用 LaTeX 语法编写公式,并实时预览效果。
4. 典型生态项目
4.1 JupyterLab
虽然 jupyter_contrib_nbextensions 主要针对 Jupyter Notebook,但 JupyterLab 也有类似的扩展集合,可以在 jupyterlab-contrib 找到。
4.2 JupyterHub
JupyterHub 是一个多用户 Jupyter Notebook 服务器,可以与 jupyter_contrib_nbextensions 结合使用,为多用户环境提供丰富的扩展功能。
4.3 nbconvert
nbconvert 是 Jupyter 的一个工具,用于将 Notebook 转换为其他格式(如 HTML、PDF 等)。jupyter_contrib_nbextensions 提供了一些额外的模板和预处理器,可以增强 nbconvert 的功能。
通过以上步骤,您可以快速启动并使用 jupyter_contrib_nbextensions,为 Jupyter Notebook 添加丰富的功能,提升工作效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00