首页
/ JupyterLab 开源项目教程

JupyterLab 开源项目教程

2024-10-09 06:54:37作者:温艾琴Wonderful

1. 项目介绍

JupyterLab 是一个基于 Jupyter Notebook 和架构的可扩展计算环境。它提供了所有经典 Jupyter Notebook 的构建模块(如笔记本、终端、文本编辑器、文件浏览器、丰富的输出等),并在一个灵活而强大的用户界面中呈现。JupyterLab 可以通过使用公共 API 的 npm 包进行扩展。预构建的扩展可以通过 PyPI、conda 和其他包管理器分发。源代码扩展可以直接从 npm 安装(搜索 jupyterlab-extension),但需要额外的构建步骤。

2. 项目快速启动

安装 JupyterLab

你可以使用 condamambapip 来安装 JupyterLab。以下是安装命令:

使用 conda 安装

conda install -c conda-forge jupyterlab

使用 mamba 安装

mamba install -c conda-forge jupyterlab

使用 pip 安装

pip install jupyterlab

如果你使用 pip install --user 安装,必须将用户级别的 bin 目录添加到你的 PATH 环境变量中,以便启动 JupyterLab。如果你使用 Unix 衍生系统(如 FreeBSD、GNU/Linux、macOS),可以运行以下命令:

export PATH="$HOME/local/bin:$PATH"

启动 JupyterLab

安装完成后,你可以通过以下命令启动 JupyterLab:

jupyter lab

JupyterLab 将自动在浏览器中打开。

3. 应用案例和最佳实践

数据科学和机器学习

JupyterLab 是数据科学家和机器学习工程师的理想工具。它支持多种数据处理和可视化库,如 Pandas、NumPy、Matplotlib 和 Seaborn。通过 JupyterLab,用户可以在一个环境中完成数据清洗、分析、建模和可视化。

教育和培训

JupyterLab 也被广泛用于教育和培训领域。教师和学生可以使用 Jupyter Notebook 编写交互式课程材料,并通过 JupyterLab 进行实时演示和练习。

软件开发

JupyterLab 不仅限于数据科学,它还可以用于软件开发。开发者可以使用 JupyterLab 进行代码编写、调试和测试,并通过扩展功能增强开发体验。

4. 典型生态项目

Jupyter Notebook

Jupyter Notebook 是 JupyterLab 的基础,它提供了一个交互式的计算环境,支持多种编程语言。

JupyterHub

JupyterHub 是一个多用户 Jupyter Notebook 服务器,适用于教育和研究机构,允许多个用户同时访问 JupyterLab 环境。

Voilà

Voilà 是一个 Jupyter 扩展,可以将 Jupyter Notebook 转换为独立的 Web 应用程序,适用于数据可视化和报告生成。

nbconvert

nbconvert 是一个工具,可以将 Jupyter Notebook 转换为多种格式,如 HTML、PDF 和 Markdown,方便分享和发布。

通过这些生态项目,JupyterLab 提供了一个完整的计算和协作环境,适用于各种应用场景。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1