JupyterLab 开源项目教程
1. 项目介绍
JupyterLab 是一个基于 Jupyter Notebook 和架构的可扩展计算环境。它提供了所有经典 Jupyter Notebook 的构建模块(如笔记本、终端、文本编辑器、文件浏览器、丰富的输出等),并在一个灵活而强大的用户界面中呈现。JupyterLab 可以通过使用公共 API 的 npm 包进行扩展。预构建的扩展可以通过 PyPI、conda 和其他包管理器分发。源代码扩展可以直接从 npm 安装(搜索 jupyterlab-extension),但需要额外的构建步骤。
2. 项目快速启动
安装 JupyterLab
你可以使用 conda、mamba 或 pip 来安装 JupyterLab。以下是安装命令:
使用 conda 安装
conda install -c conda-forge jupyterlab
使用 mamba 安装
mamba install -c conda-forge jupyterlab
使用 pip 安装
pip install jupyterlab
如果你使用 pip install --user 安装,必须将用户级别的 bin 目录添加到你的 PATH 环境变量中,以便启动 JupyterLab。如果你使用 Unix 衍生系统(如 FreeBSD、GNU/Linux、macOS),可以运行以下命令:
export PATH="$HOME/local/bin:$PATH"
启动 JupyterLab
安装完成后,你可以通过以下命令启动 JupyterLab:
jupyter lab
JupyterLab 将自动在浏览器中打开。
3. 应用案例和最佳实践
数据科学和机器学习
JupyterLab 是数据科学家和机器学习工程师的理想工具。它支持多种数据处理和可视化库,如 Pandas、NumPy、Matplotlib 和 Seaborn。通过 JupyterLab,用户可以在一个环境中完成数据清洗、分析、建模和可视化。
教育和培训
JupyterLab 也被广泛用于教育和培训领域。教师和学生可以使用 Jupyter Notebook 编写交互式课程材料,并通过 JupyterLab 进行实时演示和练习。
软件开发
JupyterLab 不仅限于数据科学,它还可以用于软件开发。开发者可以使用 JupyterLab 进行代码编写、调试和测试,并通过扩展功能增强开发体验。
4. 典型生态项目
Jupyter Notebook
Jupyter Notebook 是 JupyterLab 的基础,它提供了一个交互式的计算环境,支持多种编程语言。
JupyterHub
JupyterHub 是一个多用户 Jupyter Notebook 服务器,适用于教育和研究机构,允许多个用户同时访问 JupyterLab 环境。
Voilà
Voilà 是一个 Jupyter 扩展,可以将 Jupyter Notebook 转换为独立的 Web 应用程序,适用于数据可视化和报告生成。
nbconvert
nbconvert 是一个工具,可以将 Jupyter Notebook 转换为多种格式,如 HTML、PDF 和 Markdown,方便分享和发布。
通过这些生态项目,JupyterLab 提供了一个完整的计算和协作环境,适用于各种应用场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00