SQLAlchemy-Datatables 入门指南
2024-09-12 13:44:59作者:翟江哲Frasier
项目介绍
SQLAlchemy-Datatables 是一个框架中立的库,它实现了 jQuery DataTables ≥ 1.10 与 SQLAlchemy 的集成,帮助开发者在应用程序中管理服务器端请求。这个库特别适用于那些希望在Web应用中实现动态、可排序、可搜索的数据表格的场景,并且兼容诸如 Pyramid 和 Flask 等Python Web框架。
项目快速启动
安装
首先,你需要安装 sqlalchemy-datatables。通过pip安装是最快捷的方式:
$ pip install sqlalchemy-datatables
如果你想要从源码进行安装或者开发,可以执行以下命令:
$ git clone git@github.com:Pegase745/sqlalchemy-datatables.git
$ cd sqlalchemy-datatables
$ pip install .
示例应用
假设你已经有了一个基于Flask的应用,下面是如何设置基本的服务器端数据处理逻辑:
from flask import Flask, jsonify
from sqlalchemy.orm import Session
from sqlalchemy_datatables import ColumnDT, DataTables
from your_models import User, Address
app = Flask(__name__)
@app.route('/data', methods=['GET'])
def data():
# 定义列
columns = [
ColumnDT(User.id),
ColumnDT(User.name),
ColumnDT(Address.description),
ColumnDT(lambda x: x.birthday.strftime('%d-%m-%Y'), mData='birthday_string'),
]
# 构建查询(这里做了简化,实际使用时可能需要更复杂的查询)
query = Session.query()
query = query.select_from(User)
query = query.join(Address)
query = query.filter(Address.id > 4)
# 实例化DataTables对象并返回结果
row_table = DataTables(request.args, User, query, columns)
return jsonify(row_table.output_result())
前端部分,确保你的HTML文件中有jQuery以及DataTables的引用,并配置表格:
<table id="myTable" class="display">
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Description</th>
<th>Birthday</th>
</tr>
</thead>
<tbody></tbody>
</table>
<script>
$(document).ready(function() {
$("#myTable").DataTable({
"processing": true,
"serverSide": true,
"ajax": "{{ url_for('data') }}"
});
});
</script>
记得将your_models替换为你实际的模型位置,并确保URL路由设置正确。
应用案例和最佳实践
案例一:复杂过滤
对于复杂的筛选需求,你可以利用Datatables的API和自定义过滤函数来增强用户体验。
# 假设我们需要按用户姓名的首字母大写显示
def uppercase_filter(chain):
return chain.upper() if chain else chain
# 在列定义中使用该过滤函数
columns = [
ColumnDT(User.id),
ColumnDT(User.name, filter=uppercase_filter),
]
最佳实践
- 使用清晰的命名约定,以保持代码的可读性。
- 对于大型应用,考虑将数据处理逻辑封装到单独的服务或模块中。
- 利用Flask的蓝本(Blueprints)来组织路由,特别是在多视图应用中。
典型生态项目
SQLAlchemy-Datatables因其灵活性和对多种框架的支持,在很多Python后端项目中被广泛采用。尤其是在那些要求高度定制和服务器端分页、排序、搜索功能的Web应用中,结合如Flask-Security这样的扩展,可以构建出既安全又功能丰富的数据展示界面。
尽管没有特定的“典型生态项目”名称列出,但任何需要高效数据表呈现的Web应用都可以视为其生态的一部分,比如CRUD应用、数据分析平台或是内部管理系统。
以上就是关于如何开始使用 SQLAlchemy-Datatables 的基本指南,通过这个库,开发者可以轻松地实现在web应用中的动态数据表格交互功能。希望这能成为你在构建下一代数据密集型应用时的有效工具。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178