SQLAlchemy-TiDB 连接指南
2024-08-07 15:11:26作者:舒璇辛Bertina
1. 项目介绍
sqlalchemy-tidb 是一个专门为 SQLAlchemy 框架添加对 TiDB 数据库支持的项目。TiDB 是一款高度兼容 MySQL 的分布式数据库,而 SQLAlchemy 则是 Python 中流行的 SQL 工具包和对象关系映射(ORM)框架。通过这个项目,开发者可以在 Python 应用中使用 SQLAlchemy 无缝地连接和操作 TiDB 数据库。
支持版本
- TiDB: 4.x 及更高
- SQLAlchemy: 1.4.x 及更高
- Python: 3.6 及更高
2. 项目快速启动
要安装 sqlalchemy-tidb,可以使用 pip 安装最新的开发版本:
pip install git+https://github.com/pingcap/sqlalchemy-tidb.git@main
在你的 Python 应用中,你可以这样连接到数据库:
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
# TiDB 连接 URL 示例
URL = 'mysql+pymysql://username:password@localhost:4000/test'
# 创建数据库引擎
engine = create_engine(URL)
# 初始化 Session 类
Session = sessionmaker(bind=engine)
# 创建会话实例
session = Session()
# 执行 SQL 查询
result = session.execute('SELECT * FROM table_name')
# 处理查询结果
for row in result:
print(row)
# 关闭会话
session.close()
3. 应用案例与最佳实践
使用 SQLAlchemy ORM
from sqlalchemy import Column, Integer, String, MetaData, Table
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50))
email = Column(String(120))
# 创建表
Base.metadata.create_all(engine)
# 插入数据
new_user = User(id=1, name='John', email='john@example.com')
session.add(new_user)
session.commit()
# 查询数据
users = session.query(User).all()
for user in users:
print(user.name, user.email)
使用 SQLAlchemy Core
from sqlalchemy import create_engine, MetaData, Table
# 获取元数据对象
metadata = MetaData()
# 加载已有表
users = Table('users', metadata, autoload_with=engine)
# 执行 SQL 查询
query = users.select().where(users.c.email == 'john@example.com')
result = engine.execute(query)
# 处理查询结果
for row in result:
print(row['name'])
4. 典型生态项目
- PyMySQL: 用于 Python 连接 MySQL 的库,也是 SQLAlchemy-TiDB 的底层实现之一。
- mysqlclient: 另一个常用的 Python MySQL 连接器,也与 SQLAlchemy 兼容。
- Django: 一个流行且强大的 Web 开发框架,支持 SQLAlchemy 作为 ORM 选项。
- Flask-SQLAlchemy: Flask 框架的一个扩展,提供了 SQLAlchemy 集成。
更多有关如何将 TiDB 集成到现有生态系统中的示例和最佳实践,可以在官方文档或社区论坛中找到。
本文档简要介绍了如何使用 SQLAlchemy-TiDB 连接和操作 TiDB 数据库,以及提供了一些基本的 ORM 和 Core API 示例。对于更深入的使用,建议查阅 SQLAlchemy 和 TiDB 的官方文档以获取更多信息。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881