SQLAlchemy-TiDB 连接指南
2024-08-07 15:11:26作者:舒璇辛Bertina
1. 项目介绍
sqlalchemy-tidb 是一个专门为 SQLAlchemy 框架添加对 TiDB 数据库支持的项目。TiDB 是一款高度兼容 MySQL 的分布式数据库,而 SQLAlchemy 则是 Python 中流行的 SQL 工具包和对象关系映射(ORM)框架。通过这个项目,开发者可以在 Python 应用中使用 SQLAlchemy 无缝地连接和操作 TiDB 数据库。
支持版本
- TiDB: 4.x 及更高
- SQLAlchemy: 1.4.x 及更高
- Python: 3.6 及更高
2. 项目快速启动
要安装 sqlalchemy-tidb,可以使用 pip 安装最新的开发版本:
pip install git+https://github.com/pingcap/sqlalchemy-tidb.git@main
在你的 Python 应用中,你可以这样连接到数据库:
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
# TiDB 连接 URL 示例
URL = 'mysql+pymysql://username:password@localhost:4000/test'
# 创建数据库引擎
engine = create_engine(URL)
# 初始化 Session 类
Session = sessionmaker(bind=engine)
# 创建会话实例
session = Session()
# 执行 SQL 查询
result = session.execute('SELECT * FROM table_name')
# 处理查询结果
for row in result:
print(row)
# 关闭会话
session.close()
3. 应用案例与最佳实践
使用 SQLAlchemy ORM
from sqlalchemy import Column, Integer, String, MetaData, Table
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50))
email = Column(String(120))
# 创建表
Base.metadata.create_all(engine)
# 插入数据
new_user = User(id=1, name='John', email='john@example.com')
session.add(new_user)
session.commit()
# 查询数据
users = session.query(User).all()
for user in users:
print(user.name, user.email)
使用 SQLAlchemy Core
from sqlalchemy import create_engine, MetaData, Table
# 获取元数据对象
metadata = MetaData()
# 加载已有表
users = Table('users', metadata, autoload_with=engine)
# 执行 SQL 查询
query = users.select().where(users.c.email == 'john@example.com')
result = engine.execute(query)
# 处理查询结果
for row in result:
print(row['name'])
4. 典型生态项目
- PyMySQL: 用于 Python 连接 MySQL 的库,也是 SQLAlchemy-TiDB 的底层实现之一。
- mysqlclient: 另一个常用的 Python MySQL 连接器,也与 SQLAlchemy 兼容。
- Django: 一个流行且强大的 Web 开发框架,支持 SQLAlchemy 作为 ORM 选项。
- Flask-SQLAlchemy: Flask 框架的一个扩展,提供了 SQLAlchemy 集成。
更多有关如何将 TiDB 集成到现有生态系统中的示例和最佳实践,可以在官方文档或社区论坛中找到。
本文档简要介绍了如何使用 SQLAlchemy-TiDB 连接和操作 TiDB 数据库,以及提供了一些基本的 ORM 和 Core API 示例。对于更深入的使用,建议查阅 SQLAlchemy 和 TiDB 的官方文档以获取更多信息。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355