UBI Reader 使用教程
1. 项目介绍
UBI Reader 是一个 Python 模块和脚本集合,专门用于提取和分析 UBI(Unsorted Block Images)和 UBIFS(Unsorted Block Image File System)镜像。UBI 和 UBIFS 是嵌入式系统中常用的文件系统格式,通常用于存储在 NAND 闪存设备上。UBI Reader 可以帮助用户从这些镜像中提取文件内容、分析镜像参数,并生成用于重建镜像的配置文件。
2. 项目快速启动
2.1 安装
首先,克隆 UBI Reader 的 GitHub 仓库:
git clone https://github.com/jrspruitt/ubi_reader.git
cd ubi_reader
然后,使用 pip 安装 UBI Reader:
pip install --user ubi_reader
2.2 基本使用
UBI Reader 提供了多个脚本,用于不同的操作。以下是一些基本的使用示例:
2.2.1 提取文件内容
使用 ubireader_extract_files 脚本从 UBI 或 UBIFS 镜像中提取文件内容:
ubireader_extract_files path/to/ubi_or_ubifs_image
2.2.2 提取镜像
使用 ubireader_extract_images 脚本从 NAND 转储中提取整个 UBI 或 UBIFS 镜像:
ubireader_extract_images path/to/nand_dump
2.2.3 显示信息
使用 ubireader_display_info 脚本显示 UBI 或 UBIFS 镜像的信息:
ubireader_display_info path/to/ubi_or_ubifs_image
3. 应用案例和最佳实践
3.1 嵌入式系统开发
在嵌入式系统开发中,UBI Reader 可以用于从 NAND 闪存中提取系统镜像,帮助开发者分析和调试系统。例如,开发者可以使用 UBI Reader 提取嵌入式设备的文件系统,检查配置文件或日志文件。
3.2 数据恢复
在数据恢复场景中,UBI Reader 可以帮助从损坏的 NAND 闪存中提取数据。通过分析 UBI 和 UBIFS 镜像,可以恢复丢失的文件或系统配置。
3.3 系统迁移
在进行系统迁移时,UBI Reader 可以用于提取旧系统的镜像,并生成用于在新系统上重建镜像的配置文件。这有助于确保新系统的配置与旧系统一致。
4. 典型生态项目
4.1 MTD-Utils
MTD-Utils 是一个用于管理 MTD(Memory Technology Device)设备的工具集,常用于嵌入式系统中。UBI Reader 可以与 MTD-Utils 结合使用,帮助用户分析和重建 UBI 和 UBIFS 镜像。
4.2 U-Boot
U-Boot 是一个常用的嵌入式系统引导加载程序。UBI Reader 可以用于分析 U-Boot 引导的系统镜像,帮助开发者理解和调试引导过程。
4.3 Buildroot
Buildroot 是一个用于构建嵌入式 Linux 系统的工具。UBI Reader 可以用于提取 Buildroot 生成的系统镜像,帮助开发者分析和调试系统配置。
通过以上模块的介绍,您应该能够快速上手使用 UBI Reader,并在实际项目中应用它。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00