PyTorch Vision中deform_conv2d的偏移量顺序解析
2025-05-13 05:23:38作者:谭伦延
在PyTorch Vision的deform_conv2d操作中,偏移量(offsets)的张量形状和排列顺序是一个需要特别注意的技术细节。本文将深入解析这一机制的实现原理和使用方法。
deform_conv2d操作概述
deform_conv2d是一种可变形卷积操作,它通过引入偏移量来增强标准卷积的几何变换能力。与常规卷积不同,可变形卷积的采样位置不是固定的网格,而是可以通过学习进行调整。
偏移量张量的结构
偏移量张量的形状为:
[batch_size, 2 * offset_groups * kernel_height * kernel_width, out_height, out_width]
当batch_size=1且groups=1时,简化为:
[1, 2 * kernel_height * kernel_width, out_height, out_width]
这意味着对于输出特征图的每个像素位置,都有一个包含2kHkW个值的子张量,其中kH和kW分别是卷积核的高度和宽度。
偏移量的排列顺序
关键的技术细节在于这些偏移量是如何与卷积核位置对应的。经过分析源代码和实际验证,可以确定:
- 对于卷积核中的每个位置(i,j),其中i是高度索引(0 ≤ i < kH),j是宽度索引(0 ≤ j < kW)
- 对应的x方向偏移量(p_x)存储在偏移量张量的位置:2*(j + kW * i)
- 对应的y方向偏移量(p_y)存储在偏移量张量的位置:2*(j + kW * i) + 1
这种排列方式实际上是按照行优先顺序(row-major order)将卷积核位置展平后,再为每个位置分配两个连续的偏移量值(x和y)。
实现原理分析
在底层实现中,这个顺序确保了:
- 卷积核位置被线性化为一个一维序列
- 每个位置的两个偏移分量(x,y)被连续存储
- 访问时可以高效地进行内存读取
这种设计既保持了数据局部性,又便于并行计算,同时与常规卷积核的存储顺序保持一致,减少了实现的复杂性。
实际应用建议
在使用deform_conv2d时,开发者需要注意:
- 确保偏移量张量的形状与预期一致
- 理解偏移量在内存中的排列方式
- 如果需要手动构造偏移量,要按照正确的顺序填充数据
- 调试时可以可视化偏移量来验证其正确性
理解这一细节对于正确使用可变形卷积以及实现相关算法至关重要,特别是在需要自定义偏移量生成逻辑或分析模型行为时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
331
395
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
暂无简介
Dart
766
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
747
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
352