IQA视觉问答在互动环境中的开源项目指南
2024-09-26 19:43:59作者:宣利权Counsellor
本指南旨在帮助您理解并使用Daniel Gordon等人在CVPR 2018上发表的论文“IQA: Visual Question Answering in Interactive Environments”的开源实现。此项目提供了一套完整的代码库来训练和评估互动环境下视觉问答的各种模型。
1. 项目目录结构及介绍
以下是项目的主目录结构以及关键子目录的功能说明:
thor-iqa-cvpr-2018/
├── darknet_object_detection # YOLOv3分支相关代码和权重文件
├── depth_estimation_network # 深度估计网络的代码和资产
├── generate_questions # 自动生成问题的脚本和数据
├── graphs # 图相关的文件或配置
├── layouts # 布局信息
├── networks # 各种神经网络模型
├── qa_agents # 问题回答代理(智能体)的实现
├── question_embedding # 问题编码模块
├── questions # 包含训练和测试问题的子集
│ ├── train, unseen_scenes, seen_scenes # 分别对应不同场景的问题
│ └── 内部含有不同类型的问答数据集
├── reinforcement_learning # 强化学习相关代码
├── supervised # 监督学习部分代码
├── thor_tests # 测试THOR环境是否设置正确的脚本
├── utils # 实用工具函数
├── visualizations # 训练过程中的可视化图像存储位置
├── .gitignore
├── LICENSE
├── README.md # 项目读我文件,包含安装和运行指导
├── __init__.py # 初始化Python包
├── constants.py # 全局配置变量,非常重要
├── download_weights.sh # 下载预训练权重的脚本
├── eval.py # 用于模型评估的脚本
├── run_thor_tests.py # 确保THOR环境正常运作的测试脚本
└── train.py # 训练模型的主要脚本
2. 项目的启动文件介绍
主要启动文件
- run_thor_tests.py: 这个脚本用来测试AI2THOR环境是否已正确安装,并能在您的系统上运行。它是个快速检查,确保后续的开发与训练可以顺利进行。
- train.py: 训练模型的入口点。通过修改
constants.py
中的TASK
变量,您可以选择要训练的特定任务,如导航、语言模型、或强化学习等。 - eval.py: 用于模型评估的脚本,同样需要先设置好相应的参数,尤其是
TEST_SET
以确定是评估在见过还是未见过的场景中。
3. 项目的配置文件介绍
- constants.py: 核心配置文件,其中定义了诸如任务类型(
TASK
)、测试集合(TEST_SET
)、是否开启绘图(DRAWING
)等关键参数。对于任何实验前的自定义设置,都应首先查看并可能修改这个文件。 - requirements.txt: 列出了项目依赖的所有Python库及其版本,用于确保环境的一致性。安装时,通过
pip install -r requirements.txt
命令自动安装这些依赖项。 - download_weights.sh: 脚本用于下载预训练的权重,包括深度估计网络、YOLOv3在THOR上的训练结果以及其他必要的网络权重。
注意事项
- 在开始之前,请确保您的环境满足CUDA、cuDNN、Darknet以及Python 3.5+的要求。
- 使用虚拟环境来管理项目依赖,遵循“First Time Setup”中的步骤。
- 对于不同的实验需求,详细阅读
README.md
,调整constants.py
中的相关配置。
通过上述指引,您将能够有效地准备环境,理解和操作此开源项目,进一步探索互动环境下的视觉问答技术。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
211
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
JavaScript
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194