IQA视觉问答在互动环境中的开源项目指南
2024-09-26 11:13:59作者:宣利权Counsellor
本指南旨在帮助您理解并使用Daniel Gordon等人在CVPR 2018上发表的论文“IQA: Visual Question Answering in Interactive Environments”的开源实现。此项目提供了一套完整的代码库来训练和评估互动环境下视觉问答的各种模型。
1. 项目目录结构及介绍
以下是项目的主目录结构以及关键子目录的功能说明:
thor-iqa-cvpr-2018/
├── darknet_object_detection # YOLOv3分支相关代码和权重文件
├── depth_estimation_network # 深度估计网络的代码和资产
├── generate_questions # 自动生成问题的脚本和数据
├── graphs # 图相关的文件或配置
├── layouts # 布局信息
├── networks # 各种神经网络模型
├── qa_agents # 问题回答代理(智能体)的实现
├── question_embedding # 问题编码模块
├── questions # 包含训练和测试问题的子集
│ ├── train, unseen_scenes, seen_scenes # 分别对应不同场景的问题
│ └── 内部含有不同类型的问答数据集
├── reinforcement_learning # 强化学习相关代码
├── supervised # 监督学习部分代码
├── thor_tests # 测试THOR环境是否设置正确的脚本
├── utils # 实用工具函数
├── visualizations # 训练过程中的可视化图像存储位置
├── .gitignore
├── LICENSE
├── README.md # 项目读我文件,包含安装和运行指导
├── __init__.py # 初始化Python包
├── constants.py # 全局配置变量,非常重要
├── download_weights.sh # 下载预训练权重的脚本
├── eval.py # 用于模型评估的脚本
├── run_thor_tests.py # 确保THOR环境正常运作的测试脚本
└── train.py # 训练模型的主要脚本
2. 项目的启动文件介绍
主要启动文件
- run_thor_tests.py: 这个脚本用来测试AI2THOR环境是否已正确安装,并能在您的系统上运行。它是个快速检查,确保后续的开发与训练可以顺利进行。
- train.py: 训练模型的入口点。通过修改
constants.py中的TASK变量,您可以选择要训练的特定任务,如导航、语言模型、或强化学习等。 - eval.py: 用于模型评估的脚本,同样需要先设置好相应的参数,尤其是
TEST_SET以确定是评估在见过还是未见过的场景中。
3. 项目的配置文件介绍
- constants.py: 核心配置文件,其中定义了诸如任务类型(
TASK)、测试集合(TEST_SET)、是否开启绘图(DRAWING)等关键参数。对于任何实验前的自定义设置,都应首先查看并可能修改这个文件。 - requirements.txt: 列出了项目依赖的所有Python库及其版本,用于确保环境的一致性。安装时,通过
pip install -r requirements.txt命令自动安装这些依赖项。 - download_weights.sh: 脚本用于下载预训练的权重,包括深度估计网络、YOLOv3在THOR上的训练结果以及其他必要的网络权重。
注意事项
- 在开始之前,请确保您的环境满足CUDA、cuDNN、Darknet以及Python 3.5+的要求。
- 使用虚拟环境来管理项目依赖,遵循“First Time Setup”中的步骤。
- 对于不同的实验需求,详细阅读
README.md,调整constants.py中的相关配置。
通过上述指引,您将能够有效地准备环境,理解和操作此开源项目,进一步探索互动环境下的视觉问答技术。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134