PINTO_model_zoo中091_gaze-estimation-adas-0002模型的输入顺序问题解析
在计算机视觉领域,视线估计(GAZE Estimation)是一个重要的研究方向,它能够预测人眼注视的方向。091_gaze-estimation-adas-0002是OpenVINO模型库中的一个预训练模型,专门用于视线估计任务。
问题背景
当开发者尝试将OpenVINO的IR格式模型(.xml + .bin)转换为TFLite或ONNX格式时,发现模型最后一个Concat层的输入顺序发生了变化。具体来说,在网络结构的最后部分,原本应该将网络的其他部分与"head_pose_angle"(头部姿态角度)进行拼接,但在转换过程中这两个输入的顺序被交换了。
这种输入顺序的交换会导致模型输出错误的结果,因为神经网络对输入的顺序通常是敏感的。在视线估计任务中,头部姿态角度是一个关键输入特征,其顺序错误会直接影响最终的视线方向预测。
技术分析
从模型结构图可以看出,该网络最后使用了一个Concat层来融合两个不同的特征:
- 网络主体部分提取的特征
- 头部姿态角度(head_pose_angle)特征
在原始OpenVINO IR格式中,这两个特征的输入顺序是特定的,但在转换为其他格式时,某些转换工具可能会自动调整输入顺序,导致模型行为异常。
解决方案
针对这个问题,最直接的解决方法是手动修改模型的XML描述文件,明确指定Concat层的输入顺序。具体步骤包括:
- 使用文本编辑器或专门的模型编辑工具打开模型的XML文件
- 定位到Concat层的定义部分
- 检查并确保input标签的顺序符合预期
- 保存修改后的XML文件
这种方法不需要重新训练模型,只需调整模型的结构描述文件即可解决问题。对于使用OpenVINO工具链的开发者,还可以考虑使用OpenVINO提供的模型优化器(Model Optimizer)来确保转换过程中保持正确的输入顺序。
总结
模型格式转换过程中出现输入顺序变化是一个常见问题,特别是在涉及多输入或复杂网络结构时。开发者在使用091_gaze-estimation-adas-0002模型进行格式转换时,需要特别注意Concat层的输入顺序问题,确保模型在转换后仍能保持预期的行为。通过手动调整XML描述文件,可以有效地解决这一问题,保证视线估计的准确性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00