EdgeNets 项目启动与配置教程
2025-05-01 11:51:44作者:胡唯隽
1. 项目目录结构及介绍
EdgeNets项目的目录结构如下所示:
EdgeNets/
│
├── data/ # 存放数据集
├── docs/ # 项目文档
├── examples/ # 示例代码和脚本
├── scripts/ # 运行项目的脚本
├── src/ # 源代码目录
│ ├── __init__.py
│ ├── dataset.py # 数据集处理相关代码
│ ├── model.py # 模型定义
│ ├── solver.py # 训练和测试的逻辑
│ └── utils.py # 工具函数
│
├── tests/ # 测试代码
├── requirements.txt # 项目依赖
├── setup.py # 项目安装脚本
└── README.md # 项目说明文件
data/
:存放项目所需的数据集。docs/
:存放项目的文档资料。examples/
:包含了一些如何使用EdgeNets的示例代码和脚本。scripts/
:包含了用于运行项目的主要脚本文件。src/
:是项目的核心源代码目录,包含了模型定义、数据集处理、训练测试逻辑和工具函数等。tests/
:存放项目的单元测试代码。requirements.txt
:列出了项目运行所需的Python包。setup.py
:用于项目的安装和打包。README.md
:项目的说明文档,包含了项目的基本信息和安装使用指南。
2. 项目的启动文件介绍
项目的启动文件位于scripts/
目录下,通常是一个名为run.py
的Python脚本。这个脚本负责加载配置文件,初始化模型,加载数据,然后执行训练或测试过程。
以下是run.py
的一个基本框架:
import argparse
from src import model, dataset, solver
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description='EdgeNets训练和测试')
# 添加参数
parser.add_argument('--config', type=str, default='config.yaml', help='配置文件路径')
# 解析参数
args = parser.parse_args()
# 加载配置文件
config = solver.load_config(args.config)
# 初始化数据集
train_dataset = dataset.load_dataset(config['data']['train'])
# 初始化模型
net = model.Net(config['model'])
# 执行训练或测试
if config['mode'] == 'train':
solver.train(net, train_dataset, config)
elif config['mode'] == 'test':
solver.test(net, train_dataset, config)
if __name__ == '__main__':
main()
3. 项目的配置文件介绍
项目的配置文件通常是一个YAML格式的文件,例如config.yaml
。这个文件包含了项目运行所需的所有配置信息,如数据集路径、模型参数、训练和测试的超参数等。
以下是一个config.yaml
的示例:
data:
train: './data/train_data'
test: './data/test_data'
model:
name: 'EdgeNet'
params:
num_classes: 10
input_size: 224
train:
epochs: 10
batch_size: 64
learning_rate: 0.01
test:
batch_size: 32
mode: 'train'
这个配置文件定义了以下内容:
data
:包含训练和测试数据集的路径。model
:定义了模型的名称和参数,如类别数量和输入尺寸。train
:设置了训练的轮数、批量大小和学习率等参数。test
:设置了测试的批量大小。mode
:定义了程序运行的模式,可以是train
或test
。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
220
2.25 K

暂无简介
Dart
524
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
91

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
40
0