Redux Toolkit中injectEndpoints与upsertQueryData的类型问题解析
在使用Redux Toolkit的RTK Query功能时,开发者经常会遇到需要将API端点拆分到不同文件的情况。injectEndpoints方法为此提供了便利,但在使用过程中可能会遇到一些类型系统相关的问题,特别是当尝试使用upsertQueryData方法时。
问题现象
当开发者使用injectEndpoints创建API端点后,在mutation的onQueryStarted回调中调用upsertQueryData方法时,TypeScript可能会报错:"Argument of type '"getRecordById"' is not assignable to parameter of type 'never'"。
问题根源
这个类型错误的核心原因在于upsertQueryData方法的第一个参数需要接收一个有效的端点名称。当直接从原始API实例(如示例中的DefaultApi)调用该方法时,TypeScript无法确定该端点名称是否存在于原始API中,因为端点是通过injectEndpoints动态注入的。
解决方案
正确的做法是使用注入端点后返回的新API切片实例(如示例中的RecordApiSlice)来调用upsertQueryData方法。这样TypeScript就能正确识别所有已注入的端点名称。
// 错误方式
DefaultApi.util.upsertQueryData("getRecordById", data.id, data)
// 正确方式
RecordApiSlice.util.upsertQueryData("getRecordById", data.id, data)
技术原理
Redux Toolkit的RTK Query在设计时考虑了类型安全。当使用injectEndpoints时,它会返回一个新的API实例,该实例的类型包含了所有原始端点和新注入的端点。因此:
- 原始API实例(
DefaultApi)的类型定义中不包含后来注入的端点 - 新API切片(
RecordApiSlice)的类型定义包含了所有端点 - TypeScript会根据调用对象的类型来验证端点名称的有效性
最佳实践
- 统一引用:在同一个文件中,始终使用注入后的API切片实例
- 类型推断:利用返回的API切片实例获得完整的类型支持
- 模块化设计:将相关端点分组到不同的注入模块中,保持代码组织清晰
- 类型导出:可以考虑导出API切片的类型,以便在其他地方使用
扩展思考
这种设计模式体现了RTK Query的类型安全理念。它强制开发者在正确的上下文中使用API方法,避免了潜在的运行时错误。同时,这种显式的类型要求也促使开发者思考API的组织结构,有助于创建更清晰的代码架构。
通过理解这一机制,开发者可以更好地利用RTK Query的强大功能,构建类型安全且易于维护的API层。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00