GLM-4模型在MMLU基准测试中的复现与优化实践
2025-06-03 01:33:24作者:宣海椒Queenly
引言
在大型语言模型评估中,MMLU(Massive Multitask Language Understanding)基准测试是衡量模型多任务理解能力的重要指标。本文将详细介绍如何正确复现GLM-4-9B-Chat模型在MMLU测试中的72.4分成绩,并分享在复现过程中遇到的关键问题与解决方案。
测试环境配置
要准确复现GLM-4的MMLU测试结果,首先需要确保正确的环境配置:
- 硬件要求:推荐使用A100或V100等高性能GPU
- 软件环境:
- Python 3.10
- PyTorch 2.3.0
- Transformers 4.40.0
- vLLM 0.5.0.post1
- 精度设置:必须使用BF16精度进行推理,FP16会导致显著精度下降
关键参数设置
经过多次测试验证,以下参数组合能够获得接近官方报告的成绩:
{
'n': 1,
'best_of': 1,
'presence_penalty': 1.0,
'frequency_penalty': 0.0,
'temperature': 0.6,
'top_p': 0.8,
'top_k': 1,
'repetition_penalty': 1.0,
'use_beam_search': False,
'length_penalty': 1,
'early_stopping': False,
'stop_token_ids': [151329, 151336, 151338],
'ignore_eos': False,
'max_tokens': 2500,
'logprobs': None,
'prompt_logprobs': None,
'skip_special_tokens': True
}
特别需要注意的是:
top_k必须设置为1top_p建议0.8- 重复惩罚系数保持1.0
- 最大生成长度至少2500
常见问题与解决方案
-
精度不达标问题:
- 使用FP16时MMLU得分仅45左右
- 解决方案:必须切换至BF16精度
-
序列长度不足:
- 默认序列长度可能导致答案截断
- 解决方案:将序列长度设置为8192
-
工具调用干扰:
- 测试时意外启用function call会影响结果
- 解决方案:确保tools参数为空列表
-
提示词构造差异:
- 不同框架的提示词模板可能不一致
- 解决方案:以HuggingFace Transformers的模板为准
测试结果分析
在正确配置下,测试结果可以稳定在72.3左右,与官方报告的72.4分基本一致。微小差异可能来自:
- 测试样本的随机性
- 硬件差异导致的数值计算微小偏差
- 环境配置的细微差别
最佳实践建议
- 优先使用Transformers库进行基准测试
- 确保测试时不添加任何系统提示词
- 对于vLLM部署,注意参数传递的一致性
- 监控生成过程,确保答案完整不被截断
- 多次测试取平均值以获得稳定结果
通过遵循上述实践,研究人员可以准确评估GLM-4模型在MMLU等基准测试上的真实性能,为后续的模型优化和应用提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1