GLM-4模型在MMLU基准测试中的复现与优化实践
2025-06-03 07:11:58作者:宣海椒Queenly
引言
在大型语言模型评估中,MMLU(Massive Multitask Language Understanding)基准测试是衡量模型多任务理解能力的重要指标。本文将详细介绍如何正确复现GLM-4-9B-Chat模型在MMLU测试中的72.4分成绩,并分享在复现过程中遇到的关键问题与解决方案。
测试环境配置
要准确复现GLM-4的MMLU测试结果,首先需要确保正确的环境配置:
- 硬件要求:推荐使用A100或V100等高性能GPU
- 软件环境:
- Python 3.10
- PyTorch 2.3.0
- Transformers 4.40.0
- vLLM 0.5.0.post1
- 精度设置:必须使用BF16精度进行推理,FP16会导致显著精度下降
关键参数设置
经过多次测试验证,以下参数组合能够获得接近官方报告的成绩:
{
'n': 1,
'best_of': 1,
'presence_penalty': 1.0,
'frequency_penalty': 0.0,
'temperature': 0.6,
'top_p': 0.8,
'top_k': 1,
'repetition_penalty': 1.0,
'use_beam_search': False,
'length_penalty': 1,
'early_stopping': False,
'stop_token_ids': [151329, 151336, 151338],
'ignore_eos': False,
'max_tokens': 2500,
'logprobs': None,
'prompt_logprobs': None,
'skip_special_tokens': True
}
特别需要注意的是:
top_k
必须设置为1top_p
建议0.8- 重复惩罚系数保持1.0
- 最大生成长度至少2500
常见问题与解决方案
-
精度不达标问题:
- 使用FP16时MMLU得分仅45左右
- 解决方案:必须切换至BF16精度
-
序列长度不足:
- 默认序列长度可能导致答案截断
- 解决方案:将序列长度设置为8192
-
工具调用干扰:
- 测试时意外启用function call会影响结果
- 解决方案:确保tools参数为空列表
-
提示词构造差异:
- 不同框架的提示词模板可能不一致
- 解决方案:以HuggingFace Transformers的模板为准
测试结果分析
在正确配置下,测试结果可以稳定在72.3左右,与官方报告的72.4分基本一致。微小差异可能来自:
- 测试样本的随机性
- 硬件差异导致的数值计算微小偏差
- 环境配置的细微差别
最佳实践建议
- 优先使用Transformers库进行基准测试
- 确保测试时不添加任何系统提示词
- 对于vLLM部署,注意参数传递的一致性
- 监控生成过程,确保答案完整不被截断
- 多次测试取平均值以获得稳定结果
通过遵循上述实践,研究人员可以准确评估GLM-4模型在MMLU等基准测试上的真实性能,为后续的模型优化和应用提供可靠依据。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5