GLM-4模型在MMLU基准测试中的复现与优化实践
2025-06-03 02:49:19作者:宣海椒Queenly
引言
在大型语言模型评估中,MMLU(Massive Multitask Language Understanding)基准测试是衡量模型多任务理解能力的重要指标。本文将详细介绍如何正确复现GLM-4-9B-Chat模型在MMLU测试中的72.4分成绩,并分享在复现过程中遇到的关键问题与解决方案。
测试环境配置
要准确复现GLM-4的MMLU测试结果,首先需要确保正确的环境配置:
- 硬件要求:推荐使用A100或V100等高性能GPU
- 软件环境:
- Python 3.10
- PyTorch 2.3.0
- Transformers 4.40.0
- vLLM 0.5.0.post1
- 精度设置:必须使用BF16精度进行推理,FP16会导致显著精度下降
关键参数设置
经过多次测试验证,以下参数组合能够获得接近官方报告的成绩:
{
'n': 1,
'best_of': 1,
'presence_penalty': 1.0,
'frequency_penalty': 0.0,
'temperature': 0.6,
'top_p': 0.8,
'top_k': 1,
'repetition_penalty': 1.0,
'use_beam_search': False,
'length_penalty': 1,
'early_stopping': False,
'stop_token_ids': [151329, 151336, 151338],
'ignore_eos': False,
'max_tokens': 2500,
'logprobs': None,
'prompt_logprobs': None,
'skip_special_tokens': True
}
特别需要注意的是:
top_k必须设置为1top_p建议0.8- 重复惩罚系数保持1.0
- 最大生成长度至少2500
常见问题与解决方案
-
精度不达标问题:
- 使用FP16时MMLU得分仅45左右
- 解决方案:必须切换至BF16精度
-
序列长度不足:
- 默认序列长度可能导致答案截断
- 解决方案:将序列长度设置为8192
-
工具调用干扰:
- 测试时意外启用function call会影响结果
- 解决方案:确保tools参数为空列表
-
提示词构造差异:
- 不同框架的提示词模板可能不一致
- 解决方案:以HuggingFace Transformers的模板为准
测试结果分析
在正确配置下,测试结果可以稳定在72.3左右,与官方报告的72.4分基本一致。微小差异可能来自:
- 测试样本的随机性
- 硬件差异导致的数值计算微小偏差
- 环境配置的细微差别
最佳实践建议
- 优先使用Transformers库进行基准测试
- 确保测试时不添加任何系统提示词
- 对于vLLM部署,注意参数传递的一致性
- 监控生成过程,确保答案完整不被截断
- 多次测试取平均值以获得稳定结果
通过遵循上述实践,研究人员可以准确评估GLM-4模型在MMLU等基准测试上的真实性能,为后续的模型优化和应用提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217