BigDL项目中关于ChatGLM3模型输出格式优化的技术实践
在基于BigDL项目的实际应用中,用户在使用ChatGLM3模型进行轻量级服务部署时遇到了输出格式需要优化的问题。本文将详细介绍这一技术问题的背景、分析过程及解决方案。
问题背景
在Windows 11 23H2操作系统环境下,用户使用配备Ultra7 155H iGPU的硬件平台,通过ipex-llm 20241014版本(XPU版本)部署了ChatGLM3-6B模型的轻量级服务。用户按照官方示例配置了服务端和客户端代码,但在实际问答交互中发现模型的输出结果包含了不必要的问候语。
技术现象
当用户向模型提出关于"英特尔酷睿Ultra处理器"的技术问题时,模型返回的响应格式如下:
"您好,我是人工智能助手。关于"core ultra"的问题,根据您提供的信息..."
用户期望能够直接获得技术性回答,而不包含开头的问候语"您好,我是人工智能助手"。
问题分析
经过技术验证,发现这一问题与提问方式密切相关。当用户使用开放式提问如"core ultra"时,模型会按照默认对话模式返回包含问候语的完整回答。而当用户明确提问"core ultra是什么?"时,模型则会直接返回技术性内容,不包含问候语。
解决方案
针对这一问题,我们建议从以下几个技术角度进行优化:
-
提问方式优化:使用明确的疑问句式(如"是什么"、"有哪些特点"等)可以引导模型返回更简洁的技术性回答。
-
模型参数调整:可以通过调整temperature参数(设置为0)来减少模型的创造性输出,使其更专注于事实性回答。
-
后处理过滤:在客户端代码中添加简单的字符串处理逻辑,过滤掉已知的固定问候语模式。
-
提示词工程:在系统消息中明确指定输出格式要求,例如添加"请直接回答问题,不需要问候语"等指令。
技术实现建议
对于开发者而言,最佳实践是在客户端代码中实现后处理逻辑。以下是一个Python示例:
def clean_response(response):
# 定义需要过滤的常见问候语模式
patterns = [
"您好,我是人工智能助手",
"你好,我是AI助手",
# 可以添加更多已知模式
]
for pattern in patterns:
if response.startswith(pattern):
return response[len(pattern):].lstrip(",。 ")
return response
总结
在基于BigDL项目部署大语言模型服务时,输出格式的控制是一个常见需求。通过合理的提问方式、模型参数调整和后处理技术,开发者可以有效地优化模型输出,使其更符合特定应用场景的需求。这一经验不仅适用于ChatGLM3模型,对于其他类似的大语言模型服务部署也具有参考价值。
对于需要严格控制输出格式的生产环境,建议结合多种技术手段,并在部署前进行充分的测试验证,以确保服务质量的稳定性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00