BigDL项目中关于ChatGLM3模型输出格式优化的技术实践
在基于BigDL项目的实际应用中,用户在使用ChatGLM3模型进行轻量级服务部署时遇到了输出格式需要优化的问题。本文将详细介绍这一技术问题的背景、分析过程及解决方案。
问题背景
在Windows 11 23H2操作系统环境下,用户使用配备Ultra7 155H iGPU的硬件平台,通过ipex-llm 20241014版本(XPU版本)部署了ChatGLM3-6B模型的轻量级服务。用户按照官方示例配置了服务端和客户端代码,但在实际问答交互中发现模型的输出结果包含了不必要的问候语。
技术现象
当用户向模型提出关于"英特尔酷睿Ultra处理器"的技术问题时,模型返回的响应格式如下:
"您好,我是人工智能助手。关于"core ultra"的问题,根据您提供的信息..."
用户期望能够直接获得技术性回答,而不包含开头的问候语"您好,我是人工智能助手"。
问题分析
经过技术验证,发现这一问题与提问方式密切相关。当用户使用开放式提问如"core ultra"时,模型会按照默认对话模式返回包含问候语的完整回答。而当用户明确提问"core ultra是什么?"时,模型则会直接返回技术性内容,不包含问候语。
解决方案
针对这一问题,我们建议从以下几个技术角度进行优化:
-
提问方式优化:使用明确的疑问句式(如"是什么"、"有哪些特点"等)可以引导模型返回更简洁的技术性回答。
-
模型参数调整:可以通过调整temperature参数(设置为0)来减少模型的创造性输出,使其更专注于事实性回答。
-
后处理过滤:在客户端代码中添加简单的字符串处理逻辑,过滤掉已知的固定问候语模式。
-
提示词工程:在系统消息中明确指定输出格式要求,例如添加"请直接回答问题,不需要问候语"等指令。
技术实现建议
对于开发者而言,最佳实践是在客户端代码中实现后处理逻辑。以下是一个Python示例:
def clean_response(response):
# 定义需要过滤的常见问候语模式
patterns = [
"您好,我是人工智能助手",
"你好,我是AI助手",
# 可以添加更多已知模式
]
for pattern in patterns:
if response.startswith(pattern):
return response[len(pattern):].lstrip(",。 ")
return response
总结
在基于BigDL项目部署大语言模型服务时,输出格式的控制是一个常见需求。通过合理的提问方式、模型参数调整和后处理技术,开发者可以有效地优化模型输出,使其更符合特定应用场景的需求。这一经验不仅适用于ChatGLM3模型,对于其他类似的大语言模型服务部署也具有参考价值。
对于需要严格控制输出格式的生产环境,建议结合多种技术手段,并在部署前进行充分的测试验证,以确保服务质量的稳定性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~056CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









