OpenRLHF项目中模型参数量与显存占用的关系分析
2025-06-03 18:41:53作者:幸俭卉
在OpenRLHF项目中,合理评估模型训练所需的显存资源对于项目部署和实施至关重要。本文将从技术角度深入分析强化学习人类反馈(RLHF)第三阶段训练过程中的显存需求问题。
RLHF训练阶段的显存需求特点
RLHF第三阶段通常涉及同时训练actor模型和reward模型,这一过程会产生显著的显存占用。主要显存消耗来自以下几个方面:
- 模型参数存储:需要同时加载actor和reward两个模型的参数
- 梯度计算:训练过程中需要保存各层的梯度信息
- 优化器状态:如使用Adam等优化器会额外占用显存
- 激活值存储:前向传播过程中产生的中间激活值
- 推理缓存:在RLHF中需要同时进行推理和训练
具体案例分析
以Qwen1.5-7B作为actor模型和Qwen1.5-1.8B作为reward模型的情况为例:
- 参数总量:7B + 1.8B = 8.8B参数
- 显存估算:
- 基础参数存储:8.8B × 4字节(FP32) ≈ 35.2GB
- 考虑混合精度训练(FP16):约17.6GB
- 梯度存储:与参数相同大小,约17.6GB
- 优化器状态(如Adam):约2倍参数大小,35.2GB
- 激活值:根据batch size变化,通常几GB到十几GB
- 推理缓存:额外需要存储推理时的中间结果
实际部署建议
根据OpenRLHF项目的实践经验,使用8张NVIDIA RTX 4090显卡(每卡24GB显存)可以满足上述配置的训练需求。这种配置考虑到了:
- 模型并行:将大模型分布到多张显卡上
- 数据并行:提高训练效率
- 显存优化技术:如梯度检查点、激活值压缩等
- 合理的batch size设置
显存优化策略
在实际部署中,还可以采用以下策略进一步优化显存使用:
- 梯度累积:通过多次前向传播后一次性反向传播减少显存峰值
- 混合精度训练:使用FP16/FP32混合精度减少显存占用
- 模型并行:将大模型拆分到多个GPU上
- 激活检查点:只保存部分激活值,需要时重新计算
- 优化器状态压缩:如使用8-bit Adam等优化器变体
总结
在OpenRLHF项目中部署RLHF训练时,显存需求主要取决于模型参数量和训练策略。对于7B+1.8B的模型组合,8张24GB显存的显卡是一个经过验证的可行配置。实际部署时还需根据具体batch size、序列长度等超参数进行微调,并合理应用各种显存优化技术。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355