OpenRLHF项目中模型参数量与显存占用的关系分析
2025-06-03 20:05:30作者:幸俭卉
在OpenRLHF项目中,合理评估模型训练所需的显存资源对于项目部署和实施至关重要。本文将从技术角度深入分析强化学习人类反馈(RLHF)第三阶段训练过程中的显存需求问题。
RLHF训练阶段的显存需求特点
RLHF第三阶段通常涉及同时训练actor模型和reward模型,这一过程会产生显著的显存占用。主要显存消耗来自以下几个方面:
- 模型参数存储:需要同时加载actor和reward两个模型的参数
- 梯度计算:训练过程中需要保存各层的梯度信息
- 优化器状态:如使用Adam等优化器会额外占用显存
- 激活值存储:前向传播过程中产生的中间激活值
- 推理缓存:在RLHF中需要同时进行推理和训练
具体案例分析
以Qwen1.5-7B作为actor模型和Qwen1.5-1.8B作为reward模型的情况为例:
- 参数总量:7B + 1.8B = 8.8B参数
- 显存估算:
- 基础参数存储:8.8B × 4字节(FP32) ≈ 35.2GB
- 考虑混合精度训练(FP16):约17.6GB
- 梯度存储:与参数相同大小,约17.6GB
- 优化器状态(如Adam):约2倍参数大小,35.2GB
- 激活值:根据batch size变化,通常几GB到十几GB
- 推理缓存:额外需要存储推理时的中间结果
实际部署建议
根据OpenRLHF项目的实践经验,使用8张NVIDIA RTX 4090显卡(每卡24GB显存)可以满足上述配置的训练需求。这种配置考虑到了:
- 模型并行:将大模型分布到多张显卡上
- 数据并行:提高训练效率
- 显存优化技术:如梯度检查点、激活值压缩等
- 合理的batch size设置
显存优化策略
在实际部署中,还可以采用以下策略进一步优化显存使用:
- 梯度累积:通过多次前向传播后一次性反向传播减少显存峰值
- 混合精度训练:使用FP16/FP32混合精度减少显存占用
- 模型并行:将大模型拆分到多个GPU上
- 激活检查点:只保存部分激活值,需要时重新计算
- 优化器状态压缩:如使用8-bit Adam等优化器变体
总结
在OpenRLHF项目中部署RLHF训练时,显存需求主要取决于模型参数量和训练策略。对于7B+1.8B的模型组合,8张24GB显存的显卡是一个经过验证的可行配置。实际部署时还需根据具体batch size、序列长度等超参数进行微调,并合理应用各种显存优化技术。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76