首页
/ OpenRLHF项目中的GLM-4-9B模型DPO训练显存优化实践

OpenRLHF项目中的GLM-4-9B模型DPO训练显存优化实践

2025-06-03 14:02:15作者:韦蓉瑛

在大型语言模型训练过程中,显存优化是一个关键的技术挑战。本文将分享在使用OpenRLHF项目对GLM-4-9B模型进行DPO(直接偏好优化)训练时的显存优化经验。

训练环境配置

训练硬件配置为8张A100-80GB显卡,软件环境使用OpenRLHF项目特定版本,CUDA版本为12.3。训练参数设置为:总批次大小128,微批次大小1,采用BF16混合精度训练,启用了ZeRO-3优化和梯度检查点技术。

遇到的显存问题

在初始训练配置下,虽然采用了多种显存优化技术,但仍然在训练几十步后出现OOM(内存不足)错误。观察发现显存使用存在不均衡现象:部分显卡显存占用接近80GB上限,而其他显卡显存占用仅在40-60GB之间波动。

问题分析与解决

经过深入排查,发现问题根源在于未启用Flash Attention优化。Flash Attention是一种高效的自注意力实现方式,可以显著减少训练过程中的显存占用。在大型语言模型训练中,自注意力层通常是显存消耗的主要来源之一。

启用Flash Attention后,显存占用减少了关键的几GB空间,成功解决了OOM问题。这一优化使得训练过程能够稳定进行,同时充分利用了所有显卡的显存资源。

技术要点总结

  1. Flash Attention的重要性:在大型模型训练中,Flash Attention不仅能提升计算效率,还能有效降低显存占用,是训练稳定性的关键因素之一。

  2. 显存监控:训练过程中需要密切监控各显卡的显存使用情况,及时发现不均衡现象。

  3. 优化技术组合:BF16混合精度、ZeRO-3、梯度检查点和Flash Attention等技术可以协同作用,共同优化显存使用。

最佳实践建议

对于类似规模的模型训练,建议:

  • 始终启用Flash Attention优化
  • 训练前进行小规模测试,验证显存使用情况
  • 采用逐步增加批次大小的策略,找到最优配置
  • 定期监控训练过程中的显存变化

通过这次实践,我们验证了在OpenRLHF框架下优化GLM-4-9B等大型模型训练的可行方案,为类似规模的模型训练提供了有价值的参考经验。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8