SuperPoint-Pytorch 使用指南
2024-09-26 21:03:06作者:咎岭娴Homer
1. 项目目录结构及介绍
该项目位于 GitHub 上,它实现了自监督的兴趣点检测与描述算法——SuperPoint,纯PyTorch版本。以下是其主要目录结构:
.
├── config # 配置文件夹,存放各种yaml配置文件
├── compute_desc_eval.py # 计算描述子评价脚本
├── compute_repeatability.py # 计算重复性评估脚本
├── data # 数据集相关文件或路径
│ ├── coco # COCO数据集相关
│ └── hpatches # HPatches数据集相关
├── export_detections_repeatability.py # 导出检测结果和重复性测试脚本
├── export_descriptors.py # 导出描述符脚本
├── export_homo_labels.py # 导出同构标签脚本,可能未列出于初始查询中,基于描述假设存在
├── homo_export_labels.py # 导出HPatches同构标签的脚本
├── model # 模型定义所在目录
├── requirements.txt # 项目依赖文件
├── superpoint_bn.pth # 预训练模型权重文件
├── superpoint_v1.pth # 另一个预训练模型或者模型版本
├── train.py # 主训练脚本
├── utils # 工具函数集合
└── README.md # 项目说明文件
- config: 存放不同实验设置的YAML配置文件。
- data: 包含或指向数据集的路径,如COCO和HPatches的数据准备。
- model: 包含模型架构的Python文件,如网络结构定义。
- train.py: 启动训练的主要脚本。
- requirements.txt: 列出了项目运行所需的库及其版本。
- *.py: 功能脚本,用于计算评估指标、导出数据等。
2. 项目的启动文件介绍
train.py
这是项目的核心启动文件,用于训练SuperPoint模型。通过修改该脚本中的配置或直接指定配置文件路径,可以进行模型训练。它支持从头开始训练以及加载预训练权重。关键步骤包括设定数据集路径、配置超参数、构建网络并执行训练循环。用户可通过该脚本中的注释和提供的配置样例来定制训练流程。
运行示例
python train.py /path/to/your_config.yaml
3. 项目的配置文件介绍
配置文件通常以.yaml
扩展名存储在config
目录下。这些文件定义了模型训练和评估的各种参数,例如模型名称、是否使用批量归一化(using_bn
)、检测阈值(det_thresh
)、非极大值抑制窗口大小(nms
)、保持的顶级点的数量(topk
)等。此外,还包括数据集的路径信息(训练与测试)、解决器(solver
)的相关配置等。
示例配置段落:
model:
name: superpoint
pretrained_model: None # 或者提供预训练模型的路径
using_bn: true
data:
name: coco
image_train_path: ['/path/to/train/images']
label_train_path: ['/path/to/train/labels']
配置文件允许用户灵活调整实验设置,比如选择不同的数据集、修改学习率、控制模型结构细节等,以适应不同的研究需求或应用场景。
此文档提供了快速上手SuperPoint-Pytorch项目的基础,详细操作需参照项目内的具体文档和示例配置文件进行调整。确保在开始之前安装了所有必要的依赖项,并理解每一步的配置意义,以便顺利进行模型的训练与评估。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401