SimpleAR项目安装与配置指南
2025-04-17 17:55:29作者:郁楠烈Hubert
1. 项目基础介绍
SimpleAR是一个基于自回归技术的视觉生成模型,它在保持仅有5亿参数量的同时,能够生成高达1024分辨率的图像,并在文本到图像生成的任务中取得领先性能。该项目主要由Python语言实现,辅以Cuda进行加速计算。
2. 关键技术和框架
- 自回归模型(Autoregressive Model):SimpleAR采用了自回归模型,该模型能够逐个生成图像的像素,从而生成高质量的图像。
- Cosmos Tokenizer:用于图像编码的视觉分词器,它将图像转换成模型可以理解的视觉令牌。
- Transformers:该项目使用了Transformers库,这是处理序列数据(如文本或图像序列)的常用框架。
- PyTorch:深度学习框架,用于模型的训练和推断。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统满足了以下先决条件:
- Python 3.6及以上版本 -pip(Python的包管理器) -Cuda 10.2及以上版本(用于GPU加速)
详细安装步骤
步骤一:安装Python环境
首先,您需要为SimpleAR创建一个虚拟环境并激活它:
python3 -m venv env
source env/bin/activate
步骤二:安装依赖
在虚拟环境中安装所需的Python包:
pip install -e ".[train]"
cd transformers
pip install -e .
cd ..
步骤三:下载Cosmos Tokenizer
Cosmos Tokenizer用于将图像转换为模型可处理的视觉令牌:
cd checkpoints
git lfs install
git clone https://huggingface.co/nvidia/Cosmos-1.0-Tokenizer-DV8x16x16
步骤四:准备数据
您需要准备图像数据集,并使用Cosmos Tokenizer提取视觉令牌。以下是一个提取命令的例子:
torchrun --nnodes=1 --nproc_per_node=8 simpar/data/extract_token.py --dataset_type "image" --dataset_name "example" --code_path "/path_to_saved_tokens" --gen_data_path "/path_to_meta_json" --gen_resolution 1024
步骤五:训练模型
使用以下命令开始训练模型,您需要替换/path_to_your_dir和/path_to_output_dir为实际路径:
ACCELERATE_CPU_AFFINITY=1 \
torchrun --nnodes=4 --nproc_per_node=8 llava/train/train_mem.py --deepspeed scripts/zero3.json --model_name_or_path "/path_to_your_dir/Qwen2.5-0.5B-Instruct" --version "qwen_1_5" --gen_data_path /path_to_annotation_file --gen_image_folder "" --sample_short True --mm_tunable_parts="mm_language_model" --p_drop_cond 0.1 --mm_use_im_start_end False --mm_use_im_patch_token False --mm_patch_merge_type spatial_unpad --bf16 True --run_name test --output_dir /path_to_output_dir --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --evaluation_strategy "no" --save_strategy "steps" --save_steps 5000 --learning_rate 1e-4 --weight_decay 0.01 --warmup_ratio 0.0 --lr_scheduler_type "constant" --logging_steps 1 --tf32 True --model_max_length 1536 --dataloader_num_workers 16 --lazy_preprocess True --torch_compile True --torch_compile_backend "inductor" --dataloader_drop_last True --report_to wandb --attn_implementation sdpa
按照上述步骤,您应该能够成功安装和配置SimpleAR项目。如果在安装过程中遇到任何问题,请确保检查每个步骤的细节,并确认所有路径都是正确的。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134