SimpleAR: 开源视觉生成模型的部署与使用教程
2025-04-17 10:57:16作者:廉彬冶Miranda
1. 项目介绍
SimpleAR 是一个基于自回归原理的视觉生成模型,它通过预训练、监督微调(SFT)和强化学习(RL)等技术在文本到图像生成领域取得了突破性进展。SimpleAR 模型以其仅用 0.5B 参数就能生成高达 1024 分辨率的高保真图像而著称,同时在多个图像生成基准测试中表现出色。
2. 项目快速启动
以下是快速启动 SimpleAR 项目的步骤:
首先,您需要安装 Python 环境和必要的依赖:
python3 -m venv env
source env/bin/activate
pip install -e ".[train]"
接下来,安装 Transformers 库:
cd transformers
pip install -e .
cd ..
准备数据集:
torchrun --nnodes=1 --nproc_per_node=8 simpar/data/extract_token.py --dataset_type "image" --dataset_name "example" --code_path "/path_to_saved_tokens" --gen_data_path "/path_to_meta_json" --gen_resolution 1024
确保您有一个 JSON 格式的元数据文件,格式如下:
{
"image_path": "path_to_image",
"caption": "a photo of a cat"
}
之后,使用以下命令进行模型训练:
ACCELERATE_CPU_AFFINITY=1 \
torchrun --nnodes=4 --nproc_per_node=8 llava/train/train_mem.py --deepspeed scripts/zero3.json --model_name_or_path "/path_to_your_dir/Qwen2.5-0.5B-Instruct" --version "qwen_1_5" --gen_data_path /path_to_annotation_file --gen_image_folder "" --sample_short True --mm_tunable_parts="mm_language_model" --p_drop_cond 0.1 --mm_use_im_start_end False --mm_use_im_patch_token False --mm_patch_merge_type spatial_unpad --bf16 True --run_name "test" --output_dir /path_to_output_dir --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --evaluation_strategy "no" --save_strategy "steps" --save_steps 5000 --learning_rate 1e-4 --weight_decay 0.01 --warmup_ratio 0.0 --lr_scheduler_type "constant" --logging_steps 1 --tf32 True --model_max_length 1536 --dataloader_num_workers 16 --lazy_preprocess True --torch_compile True --torch_compile_backend "inductor" --dataloader_drop_last True --report_to wandb --attn_implementation sdpa
3. 应用案例和最佳实践
在模型训练完成后,您可以使用以下脚本对模型进行评估:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/bench_dpg.sh
为了提高推理效率,您可以尝试使用 vLLM 和 SJD 技术:
git clone https://github.com/wdrink/vllm
cd vllm
pip install -e .
cd ..
mv vllm vllm_local
mv vllm_local/vllm ./
然后在评估脚本中添加 --vllm_serving 参数来尝试 vLLM,或者使用 --sjd_sampling 参数来尝试 SJD。
4. 典型生态项目
SimpleAR 作为一种先进的视觉生成模型,可以集成到各种生态项目中,例如:
- 图像生成平台:将 SimpleAR 集成到在线图像生成平台,为用户提供高质量的图像生成服务。
- 游戏开发:在游戏开发中使用 SimpleAR 生成独特的环境、角色和道具。
- 虚拟现实:利用 SimpleAR 生成逼真的虚拟现实场景。
以上就是 SimpleAR 的部署和使用教程。希望这个教程能够帮助您快速上手 SimpleAR,并在您的项目中取得良好的效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19