SimpleAR: 开源视觉生成模型的部署与使用教程
2025-04-17 22:50:17作者:廉彬冶Miranda
1. 项目介绍
SimpleAR 是一个基于自回归原理的视觉生成模型,它通过预训练、监督微调(SFT)和强化学习(RL)等技术在文本到图像生成领域取得了突破性进展。SimpleAR 模型以其仅用 0.5B 参数就能生成高达 1024 分辨率的高保真图像而著称,同时在多个图像生成基准测试中表现出色。
2. 项目快速启动
以下是快速启动 SimpleAR 项目的步骤:
首先,您需要安装 Python 环境和必要的依赖:
python3 -m venv env
source env/bin/activate
pip install -e ".[train]"
接下来,安装 Transformers 库:
cd transformers
pip install -e .
cd ..
准备数据集:
torchrun --nnodes=1 --nproc_per_node=8 simpar/data/extract_token.py --dataset_type "image" --dataset_name "example" --code_path "/path_to_saved_tokens" --gen_data_path "/path_to_meta_json" --gen_resolution 1024
确保您有一个 JSON 格式的元数据文件,格式如下:
{
"image_path": "path_to_image",
"caption": "a photo of a cat"
}
之后,使用以下命令进行模型训练:
ACCELERATE_CPU_AFFINITY=1 \
torchrun --nnodes=4 --nproc_per_node=8 llava/train/train_mem.py --deepspeed scripts/zero3.json --model_name_or_path "/path_to_your_dir/Qwen2.5-0.5B-Instruct" --version "qwen_1_5" --gen_data_path /path_to_annotation_file --gen_image_folder "" --sample_short True --mm_tunable_parts="mm_language_model" --p_drop_cond 0.1 --mm_use_im_start_end False --mm_use_im_patch_token False --mm_patch_merge_type spatial_unpad --bf16 True --run_name "test" --output_dir /path_to_output_dir --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --evaluation_strategy "no" --save_strategy "steps" --save_steps 5000 --learning_rate 1e-4 --weight_decay 0.01 --warmup_ratio 0.0 --lr_scheduler_type "constant" --logging_steps 1 --tf32 True --model_max_length 1536 --dataloader_num_workers 16 --lazy_preprocess True --torch_compile True --torch_compile_backend "inductor" --dataloader_drop_last True --report_to wandb --attn_implementation sdpa
3. 应用案例和最佳实践
在模型训练完成后,您可以使用以下脚本对模型进行评估:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/bench_dpg.sh
为了提高推理效率,您可以尝试使用 vLLM 和 SJD 技术:
git clone https://github.com/wdrink/vllm
cd vllm
pip install -e .
cd ..
mv vllm vllm_local
mv vllm_local/vllm ./
然后在评估脚本中添加 --vllm_serving 参数来尝试 vLLM,或者使用 --sjd_sampling 参数来尝试 SJD。
4. 典型生态项目
SimpleAR 作为一种先进的视觉生成模型,可以集成到各种生态项目中,例如:
- 图像生成平台:将 SimpleAR 集成到在线图像生成平台,为用户提供高质量的图像生成服务。
- 游戏开发:在游戏开发中使用 SimpleAR 生成独特的环境、角色和道具。
- 虚拟现实:利用 SimpleAR 生成逼真的虚拟现实场景。
以上就是 SimpleAR 的部署和使用教程。希望这个教程能够帮助您快速上手 SimpleAR,并在您的项目中取得良好的效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
235
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33