SimpleAR: 开源视觉生成模型的部署与使用教程
2025-04-17 16:34:49作者:廉彬冶Miranda
1. 项目介绍
SimpleAR 是一个基于自回归原理的视觉生成模型,它通过预训练、监督微调(SFT)和强化学习(RL)等技术在文本到图像生成领域取得了突破性进展。SimpleAR 模型以其仅用 0.5B 参数就能生成高达 1024 分辨率的高保真图像而著称,同时在多个图像生成基准测试中表现出色。
2. 项目快速启动
以下是快速启动 SimpleAR 项目的步骤:
首先,您需要安装 Python 环境和必要的依赖:
python3 -m venv env
source env/bin/activate
pip install -e ".[train]"
接下来,安装 Transformers 库:
cd transformers
pip install -e .
cd ..
准备数据集:
torchrun --nnodes=1 --nproc_per_node=8 simpar/data/extract_token.py --dataset_type "image" --dataset_name "example" --code_path "/path_to_saved_tokens" --gen_data_path "/path_to_meta_json" --gen_resolution 1024
确保您有一个 JSON 格式的元数据文件,格式如下:
{
"image_path": "path_to_image",
"caption": "a photo of a cat"
}
之后,使用以下命令进行模型训练:
ACCELERATE_CPU_AFFINITY=1 \
torchrun --nnodes=4 --nproc_per_node=8 llava/train/train_mem.py --deepspeed scripts/zero3.json --model_name_or_path "/path_to_your_dir/Qwen2.5-0.5B-Instruct" --version "qwen_1_5" --gen_data_path /path_to_annotation_file --gen_image_folder "" --sample_short True --mm_tunable_parts="mm_language_model" --p_drop_cond 0.1 --mm_use_im_start_end False --mm_use_im_patch_token False --mm_patch_merge_type spatial_unpad --bf16 True --run_name "test" --output_dir /path_to_output_dir --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --evaluation_strategy "no" --save_strategy "steps" --save_steps 5000 --learning_rate 1e-4 --weight_decay 0.01 --warmup_ratio 0.0 --lr_scheduler_type "constant" --logging_steps 1 --tf32 True --model_max_length 1536 --dataloader_num_workers 16 --lazy_preprocess True --torch_compile True --torch_compile_backend "inductor" --dataloader_drop_last True --report_to wandb --attn_implementation sdpa
3. 应用案例和最佳实践
在模型训练完成后,您可以使用以下脚本对模型进行评估:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/bench_dpg.sh
为了提高推理效率,您可以尝试使用 vLLM 和 SJD 技术:
git clone https://github.com/wdrink/vllm
cd vllm
pip install -e .
cd ..
mv vllm vllm_local
mv vllm_local/vllm ./
然后在评估脚本中添加 --vllm_serving
参数来尝试 vLLM,或者使用 --sjd_sampling
参数来尝试 SJD。
4. 典型生态项目
SimpleAR 作为一种先进的视觉生成模型,可以集成到各种生态项目中,例如:
- 图像生成平台:将 SimpleAR 集成到在线图像生成平台,为用户提供高质量的图像生成服务。
- 游戏开发:在游戏开发中使用 SimpleAR 生成独特的环境、角色和道具。
- 虚拟现实:利用 SimpleAR 生成逼真的虚拟现实场景。
以上就是 SimpleAR 的部署和使用教程。希望这个教程能够帮助您快速上手 SimpleAR,并在您的项目中取得良好的效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~056CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58