SimpleAR: 开源视觉生成模型的部署与使用教程
2025-04-17 06:12:34作者:廉彬冶Miranda
1. 项目介绍
SimpleAR 是一个基于自回归原理的视觉生成模型,它通过预训练、监督微调(SFT)和强化学习(RL)等技术在文本到图像生成领域取得了突破性进展。SimpleAR 模型以其仅用 0.5B 参数就能生成高达 1024 分辨率的高保真图像而著称,同时在多个图像生成基准测试中表现出色。
2. 项目快速启动
以下是快速启动 SimpleAR 项目的步骤:
首先,您需要安装 Python 环境和必要的依赖:
python3 -m venv env
source env/bin/activate
pip install -e ".[train]"
接下来,安装 Transformers 库:
cd transformers
pip install -e .
cd ..
准备数据集:
torchrun --nnodes=1 --nproc_per_node=8 simpar/data/extract_token.py --dataset_type "image" --dataset_name "example" --code_path "/path_to_saved_tokens" --gen_data_path "/path_to_meta_json" --gen_resolution 1024
确保您有一个 JSON 格式的元数据文件,格式如下:
{
"image_path": "path_to_image",
"caption": "a photo of a cat"
}
之后,使用以下命令进行模型训练:
ACCELERATE_CPU_AFFINITY=1 \
torchrun --nnodes=4 --nproc_per_node=8 llava/train/train_mem.py --deepspeed scripts/zero3.json --model_name_or_path "/path_to_your_dir/Qwen2.5-0.5B-Instruct" --version "qwen_1_5" --gen_data_path /path_to_annotation_file --gen_image_folder "" --sample_short True --mm_tunable_parts="mm_language_model" --p_drop_cond 0.1 --mm_use_im_start_end False --mm_use_im_patch_token False --mm_patch_merge_type spatial_unpad --bf16 True --run_name "test" --output_dir /path_to_output_dir --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --evaluation_strategy "no" --save_strategy "steps" --save_steps 5000 --learning_rate 1e-4 --weight_decay 0.01 --warmup_ratio 0.0 --lr_scheduler_type "constant" --logging_steps 1 --tf32 True --model_max_length 1536 --dataloader_num_workers 16 --lazy_preprocess True --torch_compile True --torch_compile_backend "inductor" --dataloader_drop_last True --report_to wandb --attn_implementation sdpa
3. 应用案例和最佳实践
在模型训练完成后,您可以使用以下脚本对模型进行评估:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/bench_dpg.sh
为了提高推理效率,您可以尝试使用 vLLM 和 SJD 技术:
git clone https://github.com/wdrink/vllm
cd vllm
pip install -e .
cd ..
mv vllm vllm_local
mv vllm_local/vllm ./
然后在评估脚本中添加 --vllm_serving 参数来尝试 vLLM,或者使用 --sjd_sampling 参数来尝试 SJD。
4. 典型生态项目
SimpleAR 作为一种先进的视觉生成模型,可以集成到各种生态项目中,例如:
- 图像生成平台:将 SimpleAR 集成到在线图像生成平台,为用户提供高质量的图像生成服务。
- 游戏开发:在游戏开发中使用 SimpleAR 生成独特的环境、角色和道具。
- 虚拟现实:利用 SimpleAR 生成逼真的虚拟现实场景。
以上就是 SimpleAR 的部署和使用教程。希望这个教程能够帮助您快速上手 SimpleAR,并在您的项目中取得良好的效果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895