Attend-and-Excite 项目使用教程
1. 项目介绍
Attend-and-Excite 是一个基于注意力机制的语义引导方法,用于改进文本到图像扩散模型的生成效果。该项目由 Hila Chefer、Yuval Alaluf、Yael Vinker、Lior Wolf 和 Daniel Cohen-Or 等人开发,并在 SIGGRAPH 2023 上发表。
该方法通过在图像合成过程中修改交叉注意力值,引导生成模型关注文本中的所有主体,从而生成更忠实于输入文本提示的图像。与传统的 Stable Diffusion 模型相比,Attend-and-Excite 能够更好地处理多对象生成和属性绑定问题。
2. 项目快速启动
环境设置
首先,确保你已经安装了 Conda。然后,按照以下步骤设置环境:
# 创建并激活 Conda 环境
conda env create -f environment/environment.yaml
conda activate ldm
安装依赖
在激活环境后,安装额外的依赖项:
pip install -r environment/requirements.txt
生成图像
使用以下命令生成图像:
python run.py --prompt "a cat and a dog" --seeds [0] --token_indices [2,5]
参数说明
--prompt
: 输入的文本提示。--seeds
: 随机种子列表。--token_indices
: 需要修改的文本标记索引。
3. 应用案例和最佳实践
案例1:多对象生成
在传统的 Stable Diffusion 模型中,生成包含多个对象的图像时,可能会出现遗漏或错误绑定属性的问题。使用 Attend-and-Excite 可以显著改善这一问题。
输入提示: "a horse and a dog"
输出: 生成的图像中,马和狗都能清晰地呈现,且属性正确绑定。
案例2:属性绑定
在某些情况下,模型可能会错误地将颜色或其他属性绑定到错误的对象上。Attend-and-Excite 通过增强主体标记的激活,确保属性正确绑定。
输入提示: "a red car and a blue bike"
输出: 生成的图像中,红色汽车和蓝色自行车都能正确呈现。
4. 典型生态项目
Hugging Face Diffusers 库
Attend-and-Excite 项目依赖于 Hugging Face 的 Diffusers 库,该库提供了 Stable Diffusion 模型的下载和使用接口。
Prompt-to-Prompt 代码库
该项目还借鉴了 Prompt-to-Prompt 代码库的一些实现,用于处理文本到图像生成的相关任务。
BLIP 库
在评估生成的图像时,可以使用 BLIP 库生成图像的描述,并计算与输入文本提示的相似度。
pip install lavis
通过这些生态项目的结合,可以进一步提升 Attend-and-Excite 的应用效果和评估准确性。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









