Attend-and-Excite 项目使用教程
1. 项目介绍
Attend-and-Excite 是一个基于注意力机制的语义引导方法,用于改进文本到图像扩散模型的生成效果。该项目由 Hila Chefer、Yuval Alaluf、Yael Vinker、Lior Wolf 和 Daniel Cohen-Or 等人开发,并在 SIGGRAPH 2023 上发表。
该方法通过在图像合成过程中修改交叉注意力值,引导生成模型关注文本中的所有主体,从而生成更忠实于输入文本提示的图像。与传统的 Stable Diffusion 模型相比,Attend-and-Excite 能够更好地处理多对象生成和属性绑定问题。
2. 项目快速启动
环境设置
首先,确保你已经安装了 Conda。然后,按照以下步骤设置环境:
# 创建并激活 Conda 环境
conda env create -f environment/environment.yaml
conda activate ldm
安装依赖
在激活环境后,安装额外的依赖项:
pip install -r environment/requirements.txt
生成图像
使用以下命令生成图像:
python run.py --prompt "a cat and a dog" --seeds [0] --token_indices [2,5]
参数说明
--prompt: 输入的文本提示。--seeds: 随机种子列表。--token_indices: 需要修改的文本标记索引。
3. 应用案例和最佳实践
案例1:多对象生成
在传统的 Stable Diffusion 模型中,生成包含多个对象的图像时,可能会出现遗漏或错误绑定属性的问题。使用 Attend-and-Excite 可以显著改善这一问题。
输入提示: "a horse and a dog"
输出: 生成的图像中,马和狗都能清晰地呈现,且属性正确绑定。
案例2:属性绑定
在某些情况下,模型可能会错误地将颜色或其他属性绑定到错误的对象上。Attend-and-Excite 通过增强主体标记的激活,确保属性正确绑定。
输入提示: "a red car and a blue bike"
输出: 生成的图像中,红色汽车和蓝色自行车都能正确呈现。
4. 典型生态项目
Hugging Face Diffusers 库
Attend-and-Excite 项目依赖于 Hugging Face 的 Diffusers 库,该库提供了 Stable Diffusion 模型的下载和使用接口。
Prompt-to-Prompt 代码库
该项目还借鉴了 Prompt-to-Prompt 代码库的一些实现,用于处理文本到图像生成的相关任务。
BLIP 库
在评估生成的图像时,可以使用 BLIP 库生成图像的描述,并计算与输入文本提示的相似度。
pip install lavis
通过这些生态项目的结合,可以进一步提升 Attend-and-Excite 的应用效果和评估准确性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00