Attend-and-Excite 项目使用教程
1. 项目介绍
Attend-and-Excite 是一个基于注意力机制的语义引导方法,用于改进文本到图像扩散模型的生成效果。该项目由 Hila Chefer、Yuval Alaluf、Yael Vinker、Lior Wolf 和 Daniel Cohen-Or 等人开发,并在 SIGGRAPH 2023 上发表。
该方法通过在图像合成过程中修改交叉注意力值,引导生成模型关注文本中的所有主体,从而生成更忠实于输入文本提示的图像。与传统的 Stable Diffusion 模型相比,Attend-and-Excite 能够更好地处理多对象生成和属性绑定问题。
2. 项目快速启动
环境设置
首先,确保你已经安装了 Conda。然后,按照以下步骤设置环境:
# 创建并激活 Conda 环境
conda env create -f environment/environment.yaml
conda activate ldm
安装依赖
在激活环境后,安装额外的依赖项:
pip install -r environment/requirements.txt
生成图像
使用以下命令生成图像:
python run.py --prompt "a cat and a dog" --seeds [0] --token_indices [2,5]
参数说明
--prompt: 输入的文本提示。--seeds: 随机种子列表。--token_indices: 需要修改的文本标记索引。
3. 应用案例和最佳实践
案例1:多对象生成
在传统的 Stable Diffusion 模型中,生成包含多个对象的图像时,可能会出现遗漏或错误绑定属性的问题。使用 Attend-and-Excite 可以显著改善这一问题。
输入提示: "a horse and a dog"
输出: 生成的图像中,马和狗都能清晰地呈现,且属性正确绑定。
案例2:属性绑定
在某些情况下,模型可能会错误地将颜色或其他属性绑定到错误的对象上。Attend-and-Excite 通过增强主体标记的激活,确保属性正确绑定。
输入提示: "a red car and a blue bike"
输出: 生成的图像中,红色汽车和蓝色自行车都能正确呈现。
4. 典型生态项目
Hugging Face Diffusers 库
Attend-and-Excite 项目依赖于 Hugging Face 的 Diffusers 库,该库提供了 Stable Diffusion 模型的下载和使用接口。
Prompt-to-Prompt 代码库
该项目还借鉴了 Prompt-to-Prompt 代码库的一些实现,用于处理文本到图像生成的相关任务。
BLIP 库
在评估生成的图像时,可以使用 BLIP 库生成图像的描述,并计算与输入文本提示的相似度。
pip install lavis
通过这些生态项目的结合,可以进一步提升 Attend-and-Excite 的应用效果和评估准确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00