Xan项目中的词汇共现统计方法优化:从Chi2到G2检验
2025-07-01 10:36:40作者:侯霆垣
在文本挖掘和自然语言处理领域,词汇共现分析是一项基础而重要的技术。Xan项目作为文本分析工具,近期对其词汇共现统计模块进行了重要升级,引入了更全面的统计检验方法,包括完整的卡方检验(Chi2)和似然比检验(G2)。
传统卡方检验的局限性
在早期版本中,Xan项目仅实现了简化的卡方检验计算,仅考虑了观察值大于期望值的情况。这种方法虽然计算简单,但在统计学上不够严谨,可能导致某些有意义的共现关系被忽略。
简化版卡方检验公式为:
χ² = (观察值 - 期望值)² / 期望值
这种简化计算只适用于单侧检验,且忽略了共现矩阵中其他单元格的信息。
完整卡方检验的实现
升级后的版本实现了完整的2×2列联表卡方检验,考虑了共现关系的四种可能情况:
- 两个词同时出现(观察值11)
- 第一个词出现而第二个词不出现(观察值12)
- 第二个词出现而第一个词不出现(观察值21)
- 两个词都不出现(观察值22)
完整卡方检验的计算公式为:
χ² = Σ(观察值ij - 期望值ij)² / 期望值ij
其中期望值的计算基于词汇独立假设,即:
期望值11 = (词A频次 × 词B频次) / 总窗口数
期望值12 = (词A频次 × 非词B频次) / 总窗口数
期望值21 = (非词A频次 × 词B频次) / 总窗口数
期望值22 = (非词A频次 × 非词B频次) / 总窗口数
似然比检验(G2)的引入
除了卡方检验,Xan项目还实现了似然比检验(G2),这是一种基于信息论的统计方法,特别适用于稀疏数据。G2检验的计算公式为:
G2 = 2 × Σ[观察值 × ln(观察值/期望值)]
G2检验与卡方检验渐近等价,但在小样本情况下表现更好。Xan项目中的实现同样考虑了完整的2×2列联表。
分布相似性度量
Xan项目还实现了一种基于G2检验的分布相似性度量方法。该方法首先通过G2检验筛选出显著性关联(通常设定p<0.05,对应G2≥3.84),然后计算两个词的邻居分布相似度:
相似度 = 共同邻居的最小G2值之和 / (词A邻居G2值之和 - AB对的G2值)
这种方法不仅考虑了两个词的直接共现关系,还考虑了它们在上下文中的分布相似性,能够发现更丰富的语义关联。
实现细节与优化
在具体实现上,Xan项目进行了多项优化:
- 避免重复计算:预先计算并缓存每个词的总共现频次
- 条件过滤:只处理不同词对间的共现关系
- 显著性阈值:对G2检验结果应用统计显著性阈值
- 数值稳定性:处理零频次和极小期望值的情况
这些统计方法的改进使Xan项目能够更准确地捕捉词汇间的语义关系,为下游任务如主题建模、词向量构建等提供了更可靠的基础。特别是完整卡方检验和G2检验的引入,使得系统能够处理各种不同分布特性的文本数据,提高了分析的鲁棒性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492