YOLOv9中GELAN模块的结构解析与修正
2025-05-25 12:51:33作者:晏闻田Solitary
引言
在目标检测领域,YOLO系列算法一直以其高效的性能著称。最新发布的YOLOv9引入了一个名为GELAN(Generalized ELAN)的新型网络模块,该模块在特征提取和融合方面表现出色。本文将深入分析GELAN模块的结构设计,并讨论其实现细节中的关键点。
GELAN模块的原始设计
根据YOLOv9论文中的描述,GELAN模块最初被设计为一个多分支特征融合结构。从代码实现来看,GELAN的核心类RepNCSPELAN4包含以下几个关键组件:
- 初始卷积层(cv1):将输入特征通道数从c1扩展到c3
- 两个串联的特征处理分支(cv2和cv3):每个分支包含RepNCSP模块和3x3卷积
- 最终的特征融合层(cv4):将所有分支特征拼接后进行1x1卷积
结构设计中的发现
通过仔细分析代码实现,我们可以发现一个有趣的现象:在forward方法中,输入特征首先被分成两部分(y),然后通过两个处理分支(cv2和cv3)逐步处理,最后将所有中间特征拼接起来。这与论文中的图示存在一些差异。
具体来说,代码实现表明:
- 输入特征被均分为两部分(A和B)
- A部分直接保留
- B部分依次通过cv2和cv3处理,生成C和D
- 最终拼接A、C、D进行输出
结构修正与确认
经过与作者的交流确认,原始论文中的图示确实遗漏了B部分的连接。正确的GELAN结构应该包含以下特征连接:
- 初始分割后的A部分
- 初始分割后的B部分
- 经过cv2处理后的C部分
- 经过cv3处理后的D部分
作者已经确认了这一修正,并提供了更新后的结构示意图。这一修正确保了所有中间特征都能参与最终的特征融合,从而充分发挥GELAN模块的性能潜力。
技术意义
这一结构修正对于理解YOLOv9的性能优势具有重要意义:
- 保留了更多原始特征信息(A和B)
- 实现了多层次的特征融合(从浅层到深层)
- 增强了特征的多样性,有利于检测不同尺度的目标
- 符合现代CNN设计中特征重用的理念
实现细节分析
从代码层面看,GELAN模块的实现有几个值得注意的技术点:
- 使用chunk/split操作进行特征分割,确保处理的高效性
- 采用RepNCSP模块实现跨阶段部分连接,平衡计算量和性能
- 通过Sequential容器简化网络结构定义
- 提供forward和forward_split两种前向传播方式,增强灵活性
结论
通过对YOLOv9中GELAN模块的深入分析,我们不仅理解了其设计思想,还发现了原始描述中的细节差异。这一发现有助于研究人员更准确地复现和使用YOLOv9算法。GELAN模块的精心设计体现了现代目标检测网络在特征融合方面的创新思路,其多分支、多层次的特征处理方式为检测性能的提升提供了有力保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134