开源项目 `numpy_neuron_network` 使用文档
2024-09-17 02:16:31作者:尤峻淳Whitney
1. 项目目录结构及介绍
numpy_neuron_network/
├── data/
│ ├── input_data.csv
│ └── output_data.csv
├── src/
│ ├── __init__.py
│ ├── neural_network.py
│ └── utils.py
├── config/
│ └── config.json
├── tests/
│ ├── __init__.py
│ └── test_neural_network.py
├── README.md
├── requirements.txt
└── setup.py
目录结构说明
-
data/: 存放项目的数据文件,包括输入数据和输出数据。
input_data.csv: 输入数据文件。output_data.csv: 输出数据文件。
-
src/: 存放项目的源代码。
__init__.py: 使src成为一个 Python 包。neural_network.py: 神经网络的核心实现代码。utils.py: 项目中使用的工具函数。
-
config/: 存放项目的配置文件。
config.json: 项目的配置文件,包含神经网络的参数设置等。
-
tests/: 存放项目的测试代码。
__init__.py: 使tests成为一个 Python 包。test_neural_network.py: 神经网络的测试代码。
-
README.md: 项目的说明文档。
-
requirements.txt: 项目依赖的 Python 包列表。
-
setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
项目的启动文件是 src/neural_network.py。该文件包含了神经网络的核心实现代码,包括前向传播、反向传播、权重更新等。
主要功能模块
- NeuralNetwork 类: 定义了神经网络的主要功能,包括初始化、训练、预测等。
- forward_propagation 函数: 实现神经网络的前向传播。
- backward_propagation 函数: 实现神经网络的反向传播。
- update_weights 函数: 更新神经网络的权重。
使用示例
from src.neural_network import NeuralNetwork
# 初始化神经网络
nn = NeuralNetwork(input_size=2, hidden_size=3, output_size=1)
# 训练神经网络
nn.train(X_train, y_train, epochs=1000, learning_rate=0.1)
# 预测
predictions = nn.predict(X_test)
3. 项目的配置文件介绍
项目的配置文件是 config/config.json。该文件包含了神经网络的参数设置,如输入层大小、隐藏层大小、输出层大小、学习率等。
配置文件示例
{
"input_size": 2,
"hidden_size": 3,
"output_size": 1,
"learning_rate": 0.1,
"epochs": 1000
}
配置文件说明
- input_size: 输入层的大小。
- hidden_size: 隐藏层的大小。
- output_size: 输出层的大小。
- learning_rate: 学习率。
- epochs: 训练的迭代次数。
使用配置文件
import json
# 读取配置文件
with open('config/config.json', 'r') as f:
config = json.load(f)
# 初始化神经网络
nn = NeuralNetwork(
input_size=config['input_size'],
hidden_size=config['hidden_size'],
output_size=config['output_size']
)
# 训练神经网络
nn.train(X_train, y_train, epochs=config['epochs'], learning_rate=config['learning_rate'])
通过以上步骤,您可以成功启动并配置 numpy_neuron_network 项目,并根据需要进行训练和预测。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1