首页
/ 开源项目 `numpy_neuron_network` 使用文档

开源项目 `numpy_neuron_network` 使用文档

2024-09-17 17:32:29作者:尤峻淳Whitney

1. 项目目录结构及介绍

numpy_neuron_network/
├── data/
│   ├── input_data.csv
│   └── output_data.csv
├── src/
│   ├── __init__.py
│   ├── neural_network.py
│   └── utils.py
├── config/
│   └── config.json
├── tests/
│   ├── __init__.py
│   └── test_neural_network.py
├── README.md
├── requirements.txt
└── setup.py

目录结构说明

  • data/: 存放项目的数据文件,包括输入数据和输出数据。

    • input_data.csv: 输入数据文件。
    • output_data.csv: 输出数据文件。
  • src/: 存放项目的源代码。

    • __init__.py: 使 src 成为一个 Python 包。
    • neural_network.py: 神经网络的核心实现代码。
    • utils.py: 项目中使用的工具函数。
  • config/: 存放项目的配置文件。

    • config.json: 项目的配置文件,包含神经网络的参数设置等。
  • tests/: 存放项目的测试代码。

    • __init__.py: 使 tests 成为一个 Python 包。
    • test_neural_network.py: 神经网络的测试代码。
  • README.md: 项目的说明文档。

  • requirements.txt: 项目依赖的 Python 包列表。

  • setup.py: 项目的安装脚本。

2. 项目的启动文件介绍

项目的启动文件是 src/neural_network.py。该文件包含了神经网络的核心实现代码,包括前向传播、反向传播、权重更新等。

主要功能模块

  • NeuralNetwork 类: 定义了神经网络的主要功能,包括初始化、训练、预测等。
  • forward_propagation 函数: 实现神经网络的前向传播。
  • backward_propagation 函数: 实现神经网络的反向传播。
  • update_weights 函数: 更新神经网络的权重。

使用示例

from src.neural_network import NeuralNetwork

# 初始化神经网络
nn = NeuralNetwork(input_size=2, hidden_size=3, output_size=1)

# 训练神经网络
nn.train(X_train, y_train, epochs=1000, learning_rate=0.1)

# 预测
predictions = nn.predict(X_test)

3. 项目的配置文件介绍

项目的配置文件是 config/config.json。该文件包含了神经网络的参数设置,如输入层大小、隐藏层大小、输出层大小、学习率等。

配置文件示例

{
    "input_size": 2,
    "hidden_size": 3,
    "output_size": 1,
    "learning_rate": 0.1,
    "epochs": 1000
}

配置文件说明

  • input_size: 输入层的大小。
  • hidden_size: 隐藏层的大小。
  • output_size: 输出层的大小。
  • learning_rate: 学习率。
  • epochs: 训练的迭代次数。

使用配置文件

import json

# 读取配置文件
with open('config/config.json', 'r') as f:
    config = json.load(f)

# 初始化神经网络
nn = NeuralNetwork(
    input_size=config['input_size'],
    hidden_size=config['hidden_size'],
    output_size=config['output_size']
)

# 训练神经网络
nn.train(X_train, y_train, epochs=config['epochs'], learning_rate=config['learning_rate'])

通过以上步骤,您可以成功启动并配置 numpy_neuron_network 项目,并根据需要进行训练和预测。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
576
107
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
111
13
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
285
74
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
29
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
204
50
LangBotLangBot
😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 | 适配 QQ / 微信(企业微信、个人微信)/ 飞书 / 钉钉 / Discord / Telegram 等消息平台 | 支持 OpenAI GPT、ChatGPT、DeepSeek、Dify、Claude、Gemini、Ollama、LM Studio、SiliconFlow、Qwen、Moonshot、ChatGLM 等 LLM 的机器人 / Agent | LLM-based instant messaging bots platform, supports Discord, Telegram, WeChat, Lark, DingTalk, QQ, OpenAI ChatGPT, DeepSeek
Python
7
1
RGF_CJRGF_CJ
RGF是Windows系统下的通用渲染框架,其基于Direct3D、Direct2D、DXGI、DirectWrite、WIC、GDI、GDIplus等技术开发。RGF仓颉版(后续简称"RGF")基于RGF(C/C++版)封装优化而来。RGF为开发者提供轻量化、安全、高性能以及高度一致性的2D渲染能力,并且提供对接Direct3D的相关接口,以满足开发者对3D画面渲染的需求。
Cangjie
11
0
omega-aiomega-ai
Omega-AI:基于java打造的深度学习框架,帮助你快速搭建神经网络,实现模型推理与训练,引擎支持自动求导,多线程与GPU运算,GPU支持CUDA,CUDNN。
Java
11
2
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
47
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
900
0