首页
/ EfficientViT分布式采样器中的样本分配问题解析

EfficientViT分布式采样器中的样本分配问题解析

2025-06-28 19:12:05作者:温艾琴Wonderful

背景介绍

在深度学习模型训练过程中,数据采样器的设计对训练效果有着重要影响。EfficientViT作为一款高效的视觉Transformer模型,在其分布式训练实现中使用了一种特殊的采样器——SAMDistributedSampler。该采样器负责在多个训练节点间分配数据样本,确保每个epoch中所有样本都能被均匀使用。

问题发现

在分析EfficientViT项目代码时,发现SAMDistributedSampler类中的set_sub_num_samples方法存在一个细微但重要的逻辑错误。该方法原本的设计意图是根据子epoch数(sub_epochs_per_epoch)和当前子epoch序号(sub_epoch)来计算当前子epoch应该分配的样本数量。

错误分析

原始代码中使用了错误的变量名subnum_samples(缺少下划线),而实际上应该使用num_samples。这个错误会导致在样本总数不能被子epoch数整除时,余数分配的逻辑无法正确执行。

具体来说,当样本总数除以子epoch数有余数时,这些额外的样本应该被均匀分配到前几个子epoch中。原始代码由于变量名错误,使得这一分配逻辑失效,可能导致某些样本在训练过程中被忽略或重复使用。

修正方案

修正后的代码使用正确的变量名num_samples,确保余数分配逻辑能够正确执行。这一修改虽然看似简单,但对于保证模型训练过程中数据分布的均匀性至关重要。

技术影响

  1. 数据完整性:修正后的采样器能够确保所有训练样本都被均匀使用,避免某些样本被忽略或过度采样。

  2. 训练稳定性:均匀的样本分布有助于模型训练的稳定性,特别是在分布式训练环境下。

  3. 结果可复现性:正确的采样逻辑保证了实验结果的可靠性和可复现性。

最佳实践建议

  1. 变量命名规范:在编写代码时应严格遵守命名规范,避免因拼写错误导致的逻辑问题。

  2. 单元测试:对于采样器这类关键组件,应编写充分的单元测试,验证各种边界条件下的行为。

  3. 代码审查:重要的分布式训练组件应经过多人代码审查,以发现潜在问题。

总结

这个案例展示了深度学习框架中看似微小的代码错误可能对训练过程产生的影响。EfficientViT项目中的这个采样器问题虽然不会直接影响最终模型性能,但体现了代码质量对研究可复现性的重要性。开发者在实现类似功能时,应当特别注意这类细节问题,确保训练过程的严谨性。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
1.99 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
pytorchpytorch
Ascend Extension for PyTorch
Python
36
72
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
395
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
515
45
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K