Pinax Likes 技术文档
1. 安装指南
要安装 pinax-likes,请运行以下命令:
pip install pinax-likes
在 INSTALLED_APPS 设置中添加 pinax.likes:
INSTALLED_APPS = [
# 其他应用
"pinax.likes",
]
在设置文件中将想要被喜欢的模型添加到 PINAX_LIKES_LIKABLE_MODELS:
PINAX_LIKES_LIKABLE_MODELS = {
"app.Model": {} # 在这个字典中为每个模型覆盖默认配置设置
}
将 pinax.likes.auth_backends.CanLikeBackend 添加到 AUTHENTICATION_BACKENDS(或使用自己的自定义版本,检查 pinax.likes.can_like 权限):
AUTHENTICATION_BACKENDS = [
# 其他后端
"pinax.likes.auth_backends.CanLikeBackend",
]
在项目的 urlpatterns 中添加 pinax.likes.urls:
urlpatterns = [
# 其他 URL
url(r"^likes/", include("pinax.likes.urls", namespace="pinax_likes")),
]
2. 项目的使用说明
将每个需要被喜欢的模型添加到 PINAX_LIKES_LIKABLE_MODELS 设置中:
PINAX_LIKES_LIKABLE_MODELS = {
"profiles.Profile": {},
"videos.Video": {},
"biblion.Post": {},
}
在 Django 模板中显示“喜欢”小部件。假设你有一个博客文章的详细页面。首先在模板中加载标签:
{% load pinax_likes_tags %}
在想要显示喜欢小部件的位置,添加:
{% likes_widget request.user post %}
确保你安装了 eldarion-ajax。
Eldarion AJAX
上述的 likes_widget 模板标签和“切换喜欢”视图都遵循 eldarion-ajax 理解的 AJAX 响应。此外,本项目提供的模板将与 eldarion-ajax 无缝工作。在你的基础模板中包含 eldarion-ajax.min.js JavaScript 包:
{% load staticfiles %}
<script src="{% static "js/eldarion-ajax.min.js" %}"></script>
并在你的站点 JavaScript 中包含 eldarion-ajax:
require('eldarion-ajax');
使用 eldarion-ajax 是可选的。你可以滚动自己的 JavaScript 处理,因为视图除了返回渲染的 HTML 外,还会返回数据。此外,如果你根本不想要 ajax,视图将处理常规 POST 并执行重定向。
3. 项目API使用文档
本项目提供了以下模板标签和信号供使用:
信号
pinax.likes.signals.object_liked 和 pinax.likes.signals.object_unliked 分别在对象被喜欢和取消喜欢后发送,包含了相关的 Like 实例或对象。
滤镜
likes_count 滤镜返回给定对象喜欢的数量。
模板标签
who_likes:获取给定对象的喜欢列表。likes:获取给定用户喜欢的对象列表。render_like:渲染一个喜欢。likes_widget:渲染一个 HTML 片段,用户点击它可以取消喜欢或喜欢对象。liked:装饰一个对象的可迭代列表,指示指定用户是否喜欢每个对象。
4. 项目安装方式
请参考上述“安装指南”部分进行项目的安装。安装完成后,根据“项目的使用说明”部分配置并使用 pinax-likes。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00