Pinax Likes 技术文档
1. 安装指南
要安装 pinax-likes,请运行以下命令:
pip install pinax-likes
在 INSTALLED_APPS 设置中添加 pinax.likes:
INSTALLED_APPS = [
# 其他应用
"pinax.likes",
]
在设置文件中将想要被喜欢的模型添加到 PINAX_LIKES_LIKABLE_MODELS:
PINAX_LIKES_LIKABLE_MODELS = {
"app.Model": {} # 在这个字典中为每个模型覆盖默认配置设置
}
将 pinax.likes.auth_backends.CanLikeBackend 添加到 AUTHENTICATION_BACKENDS(或使用自己的自定义版本,检查 pinax.likes.can_like 权限):
AUTHENTICATION_BACKENDS = [
# 其他后端
"pinax.likes.auth_backends.CanLikeBackend",
]
在项目的 urlpatterns 中添加 pinax.likes.urls:
urlpatterns = [
# 其他 URL
url(r"^likes/", include("pinax.likes.urls", namespace="pinax_likes")),
]
2. 项目的使用说明
将每个需要被喜欢的模型添加到 PINAX_LIKES_LIKABLE_MODELS 设置中:
PINAX_LIKES_LIKABLE_MODELS = {
"profiles.Profile": {},
"videos.Video": {},
"biblion.Post": {},
}
在 Django 模板中显示“喜欢”小部件。假设你有一个博客文章的详细页面。首先在模板中加载标签:
{% load pinax_likes_tags %}
在想要显示喜欢小部件的位置,添加:
{% likes_widget request.user post %}
确保你安装了 eldarion-ajax。
Eldarion AJAX
上述的 likes_widget 模板标签和“切换喜欢”视图都遵循 eldarion-ajax 理解的 AJAX 响应。此外,本项目提供的模板将与 eldarion-ajax 无缝工作。在你的基础模板中包含 eldarion-ajax.min.js JavaScript 包:
{% load staticfiles %}
<script src="{% static "js/eldarion-ajax.min.js" %}"></script>
并在你的站点 JavaScript 中包含 eldarion-ajax:
require('eldarion-ajax');
使用 eldarion-ajax 是可选的。你可以滚动自己的 JavaScript 处理,因为视图除了返回渲染的 HTML 外,还会返回数据。此外,如果你根本不想要 ajax,视图将处理常规 POST 并执行重定向。
3. 项目API使用文档
本项目提供了以下模板标签和信号供使用:
信号
pinax.likes.signals.object_liked 和 pinax.likes.signals.object_unliked 分别在对象被喜欢和取消喜欢后发送,包含了相关的 Like 实例或对象。
滤镜
likes_count 滤镜返回给定对象喜欢的数量。
模板标签
who_likes:获取给定对象的喜欢列表。likes:获取给定用户喜欢的对象列表。render_like:渲染一个喜欢。likes_widget:渲染一个 HTML 片段,用户点击它可以取消喜欢或喜欢对象。liked:装饰一个对象的可迭代列表,指示指定用户是否喜欢每个对象。
4. 项目安装方式
请参考上述“安装指南”部分进行项目的安装。安装完成后,根据“项目的使用说明”部分配置并使用 pinax-likes。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00