afl-compiler-fuzzer 使用教程
1、项目介绍
afl-compiler-fuzzer 是一个针对编译器进行模糊测试的工具,它是 american fuzzy lop (AFL) 的一个变种。该项目旨在通过模糊测试技术发现编译器中的潜在漏洞。与传统的 AFL 相比,afl-compiler-fuzzer 在测试 C 语言类似的语法(如 Java、Solidity、Rust、C#、Swift、Javascript、Scala 等)时,能够显著提高测试效果。
该项目已经在 Solidity 智能合约编译器 solc 中发现了大量未知的漏洞,并因此获得了 Ethereum 基金会的 $1,000 美元的漏洞赏金。
2、项目快速启动
安装依赖
在开始之前,确保你的系统已经安装了必要的依赖,如 gcc、make 等。
克隆项目
首先,克隆 afl-compiler-fuzzer 项目到本地:
git clone https://github.com/agroce/afl-compiler-fuzzer.git
cd afl-compiler-fuzzer
编译项目
使用以下命令编译项目:
make
运行模糊测试
假设你有一个目标编译器 target_compiler,并且你有一个输入文件 input_file,你可以使用以下命令启动模糊测试:
./afl-fuzz -i input_file -o output_dir -- target_compiler @@
其中:
-i input_file:指定输入文件。-o output_dir:指定输出目录。target_compiler @@:指定目标编译器和输入文件占位符。
3、应用案例和最佳实践
应用案例
afl-compiler-fuzzer 已经被用于发现 Solidity 编译器 solc 中的多个漏洞,例如 ethereum/solidity#8272 和 ethereum/solidity#8265。这些漏洞的发现不仅帮助改进了 Solidity 编译器的安全性,还为开发者提供了宝贵的经验。
最佳实践
-
多样化输入:为了提高模糊测试的效果,建议使用多样化的输入文件。可以通过收集不同类型的输入文件来实现这一点。
-
监控和分析:使用
afl-plot工具生成 HTML 文件和图表,以便监控模糊测试的性能。例如:./afl-plot output_dir /srv/www/htdocs/plot -
持续集成:将模糊测试集成到持续集成(CI)流程中,以便在每次代码更新时自动运行模糊测试。
4、典型生态项目
1. afl-clang-fast
afl-clang-fast 是 AFL 的一个变种,专门用于与 LLVM 编译器集成。它提供了更快的编译速度和更好的性能优化。
2. libFuzzer
libFuzzer 是一个与 LLVM 集成的模糊测试库,可以与 AFL 结合使用,提供更强大的模糊测试能力。
3. zzuf
zzuf 是一个传统的模糊测试工具,虽然功能不如 AFL 强大,但在某些场景下仍然是一个不错的选择。
通过结合这些工具,可以构建一个强大的模糊测试生态系统,帮助发现和修复编译器中的潜在漏洞。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00