在Windows系统上成功运行ktransformers项目的经验分享
2025-05-16 22:53:43作者:温玫谨Lighthearted
背景介绍
ktransformers是一个基于PyTorch的高性能Transformer模型推理框架,它通过优化内存管理和计算调度来提升模型推理效率。该项目原生支持Linux系统,但在Windows平台上运行时可能会遇到一些兼容性问题。
Windows平台适配挑战
在Windows系统上直接运行ktransformers项目时,开发者可能会遇到几个关键的技术障碍:
- 内存对齐分配问题:Linux系统常用的
std::aligned_alloc
函数在Windows平台上不可用 - 平衡服务(balance_serve)依赖:该项目部分功能依赖于Linux特有的调度扩展(sched_ext)
- 动态链接库差异:Windows和Linux在动态库加载机制上的不同
关键解决方案
内存对齐分配跨平台适配
在C++代码中,内存对齐分配在Linux和Windows上有不同的实现方式。原项目使用了Linux标准的std::aligned_alloc
,在Windows上需要替换为_aligned_malloc
。
解决方案是创建一个跨平台的内存对齐分配和释放函数:
#ifdef _WIN32
#include <malloc.h>
#define aligned_alloc(size, alignment) _aligned_malloc(size, alignment)
#define aligned_free(ptr) _aligned_free(ptr)
#else
#define aligned_alloc(size, alignment) std::aligned_alloc(alignment, size)
#define aligned_free(ptr) std::free(ptr)
#endif
平衡服务功能处理
由于balance_serve功能依赖Linux特有的调度扩展,在Windows平台上暂时无法使用。可以通过以下方式处理:
- 在构建时设置
USE_BALANCE_SERVE=0
禁用该功能 - 为sched_ext相关代码提供mock实现,避免编译错误
构建配置调整
在项目的pyproject.toml文件中,需要将triton依赖替换为Windows兼容版本:
triton = "triton-windows"
实际应用效果
经过上述修改后,ktransformers可以在Windows平台上成功构建并运行。例如,可以正常加载DeepSeek-R1等模型进行推理:
python -m ktransformers.local_chat \
--model_path \DeepSeek-R1 \
--gguf_path DeepSeek-R1-UD-IQ1_S \
--optimize_config_path \optimize_rules\DeepSeek-V3-Chat.yaml \
--cpu_infer 28 \
--backend_type ktransformers
注意事项
- 确保同时修改内存分配和释放函数,避免内存泄漏
- 目前解决方案仅支持基础推理功能,balance_serve相关高级特性仍需进一步适配
- 建议在Windows平台上使用较新的Visual Studio工具链进行构建
总结
通过针对Windows平台的特定修改,ktransformers项目已经可以在Windows系统上运行基础推理功能。这为Windows开发者使用该框架提供了可能性,同时也展示了跨平台开发中常见问题的解决方法。对于需要完整功能的用户,建议在Linux环境下使用该项目。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133