YOLOv8-TensorRT-CPP 项目下载及安装教程
2024-12-09 19:52:54作者:管翌锬
1. 项目介绍
YOLOv8-TensorRT-CPP 是一个使用 TensorRT C++ API 实现的 YOLOv8 项目。它支持目标检测、语义分割和人体姿态估计。该项目旨在展示如何使用 TensorRT C++ API 在 GPU 上运行 YOLOv8 的推理。
2. 项目下载位置
要下载 YOLOv8-TensorRT-CPP 项目,请使用以下命令:
git clone https://github.com/cyrusbehr/YOLOv8-TensorRT-CPP.git --recursive
注意:请确保使用 --recursive 标志,因为该项目使用了 git submodules。
3. 项目安装环境配置
3.1 系统要求
该项目已在 Ubuntu 20.04 和 22.04 上测试并正常工作。Windows 目前不支持。
3.2 安装依赖
3.2.1 CUDA
推荐安装 CUDA 12.0 或更高版本。安装步骤如下:
sudo apt update
sudo apt install nvidia-cuda-toolkit
3.2.2 cuDNN
推荐安装 cuDNN 8 或更高版本。安装步骤如下:
sudo apt install libcudnn8
3.2.3 OpenCV
推荐安装带有 CUDA 支持的 OpenCV 4.8 或更高版本。可以通过以下脚本编译 OpenCV:
./build_opencv.sh
3.2.4 TensorRT
从 NVIDIA 官网下载 TensorRT 10 或更高版本,并按照官方文档进行安装。
3.3 环境配置示例
4. 项目安装方式
4.1 克隆项目
git clone https://github.com/cyrusbehr/YOLOv8-TensorRT-CPP.git --recursive
4.2 构建项目
进入项目目录并创建构建目录:
cd YOLOv8-TensorRT-CPP
mkdir build
cd build
运行 CMake 配置并构建项目:
cmake ..
make -j
5. 项目处理脚本
5.1 模型转换
将 PyTorch 模型转换为 ONNX 格式:
pip3 install ultralytics
cd scripts
python3 pytorch2onnx.py --pt_path <path_to_your_pt_file>
5.2 运行推理
运行目标检测推理:
./detect_object_image --model <path_to_your_onnx_model> --input <path_to_your_image>
运行实时视频推理:
./detect_object_video --model <path_to_your_onnx_model> --input 0
5.3 性能基准测试
运行基准测试脚本:
./benchmark --model <path_to_your_onnx_model> --input <path_to_your_benchmark_image>
通过以上步骤,您可以成功下载、安装并运行 YOLOv8-TensorRT-CPP 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355