VideoPipe 项目下载及安装教程
2024-12-08 13:26:26作者:范垣楠Rhoda
1. 项目介绍
VideoPipe 是一个跨平台的视频结构化(视频分析)框架,使用 C++ 编写。它具有最小的依赖性,易于使用,并且操作类似于管道,其中每个节点都是独立的,可以以各种方式组合。VideoPipe 可以用于构建不同类型的视频分析应用程序,适用于视频结构化、图像搜索、人脸识别和交通/安全领域的行为分析(如交通事件检测)等场景。
2. 项目下载位置
要下载 VideoPipe 项目,请访问项目的 GitHub 仓库。您可以通过以下命令克隆项目到本地:
git clone https://github.com/sherlockchou86/video_pipe_c.git
3. 项目安装环境配置
3.1 系统要求
- Ubuntu 18.04 x86_64
- NVIDIA rtx/tesla GPUs
- Ubuntu 18.04 aarch64 NVIDIA jetson serials device (tx2 tested)
- Ubuntu 18.04 x86_64 Cambrian MLU serials device (MLU 370 tested, code not provided)
- Ubuntu 18.04 aarch64 Rockchip RK35** serials device (RK3588 tested, code not provided)
3.2 依赖库
- C++ 17
- OpenCV >= 4.6
- GStreamer 1.14.5 (Required by OpenCV)
- GCC >= 7.5
3.3 可选依赖
- CUDA
- TensorRT
- Paddle Inference
- ONNX Runtime
3.4 环境配置示例
以下是配置环境的示例步骤:
- 安装必要的依赖库:
sudo apt-get update
sudo apt-get install build-essential cmake git libopencv-dev libgstreamer1.0-dev
- 安装 CUDA 和 TensorRT(如果需要):
# 安装 CUDA
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda
# 安装 TensorRT
sudo apt-get install tensorrt
- 安装 Paddle Inference(如果需要):
# 下载并安装 Paddle Inference
wget https://paddle-inference-lib.bj.bcebos.com/2.2.2/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda11.2_cudnn8.1.1_trt7.2.3.4/paddle_inference.tgz
tar -xzvf paddle_inference.tgz
sudo cp -r paddle_inference /usr/local/
4. 项目安装方式
- 克隆项目到本地:
git clone https://github.com/sherlockchou86/video_pipe_c.git
cd video_pipe_c
- 创建并进入构建目录:
mkdir build
cd build
- 配置并编译项目:
cmake ..
make -j8
- 可选:启用 CUDA 和 TensorRT 模块:
cmake -DVP_WITH_CUDA=ON -DVP_WITH_TRT=ON ..
make -j8
5. 项目处理脚本
以下是一个简单的示例脚本,用于运行 VideoPipe 中的一个示例:
#include "vp_nodes/vp_file_src_node.h"
#include "vp_nodes/infers/vp_yunet_face_detector_node.h"
#include "vp_nodes/infers/vp_sface_feature_encoder_node.h"
#include "vp_nodes/osd/vp_face_osd_node_v2.h"
#include "vp_nodes/vp_screen_des_node.h"
#include "vp_nodes/vp_rtmp_des_node.h"
#include "vp_utils/analysis_board/vp_analysis_board.h"
int main() {
VP_SET_LOG_INCLUDE_CODE_LOCATION(false);
VP_SET_LOG_INCLUDE_THREAD_ID(false);
VP_LOGGER_INIT();
// 1. 创建节点
auto file_src_0 = std::make_shared<vp_nodes::vp_file_src_node>("file_src_0", 0, "/test_video/10.mp4", 0, 6);
// 2. 模型推理节点
auto yunet_face_detector = std::make_shared<vp_nodes::vp_yunet_face_detector_node>("yunet_face_detector", 0);
auto sface_feature_encoder = std::make_shared<vp_nodes::vp_sface_feature_encoder_node>("sface_feature_encoder", 0);
// 3. 创建 OSD 节点
auto face_osd = std::make_shared<vp_nodes::vp_face_osd_node_v2>("face_osd", 0);
// 4. 创建输出节点
auto screen_des = std::make_shared<vp_nodes::vp_screen_des_node>("screen_des", 0);
auto rtmp_des = std::make_shared<vp_nodes::vp_rtmp_des_node>("rtmp_des", 0, "rtmp://your_rtmp_server");
// 5. 连接节点
file_src_0->link(yunet_face_detector);
yunet_face_detector->link(sface_feature_encoder);
sface_feature_encoder->link(face_osd);
face_osd->link(screen_des);
face_osd->link(rtmp_des);
// 6. 运行管道
file_src_0->run();
return 0;
}
请确保更新代码中的文件路径和 RTMP 服务器地址。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178