VideoPipe 项目下载及安装教程
2024-12-08 13:17:41作者:范垣楠Rhoda
1. 项目介绍
VideoPipe 是一个跨平台的视频结构化(视频分析)框架,使用 C++ 编写。它具有最小的依赖性,易于使用,并且操作类似于管道,其中每个节点都是独立的,可以以各种方式组合。VideoPipe 可以用于构建不同类型的视频分析应用程序,适用于视频结构化、图像搜索、人脸识别和交通/安全领域的行为分析(如交通事件检测)等场景。
2. 项目下载位置
要下载 VideoPipe 项目,请访问项目的 GitHub 仓库。您可以通过以下命令克隆项目到本地:
git clone https://github.com/sherlockchou86/video_pipe_c.git
3. 项目安装环境配置
3.1 系统要求
- Ubuntu 18.04 x86_64
- NVIDIA rtx/tesla GPUs
- Ubuntu 18.04 aarch64 NVIDIA jetson serials device (tx2 tested)
- Ubuntu 18.04 x86_64 Cambrian MLU serials device (MLU 370 tested, code not provided)
- Ubuntu 18.04 aarch64 Rockchip RK35** serials device (RK3588 tested, code not provided)
3.2 依赖库
- C++ 17
- OpenCV >= 4.6
- GStreamer 1.14.5 (Required by OpenCV)
- GCC >= 7.5
3.3 可选依赖
- CUDA
- TensorRT
- Paddle Inference
- ONNX Runtime
3.4 环境配置示例
以下是配置环境的示例步骤:
- 安装必要的依赖库:
sudo apt-get update
sudo apt-get install build-essential cmake git libopencv-dev libgstreamer1.0-dev
- 安装 CUDA 和 TensorRT(如果需要):
# 安装 CUDA
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda
# 安装 TensorRT
sudo apt-get install tensorrt
- 安装 Paddle Inference(如果需要):
# 下载并安装 Paddle Inference
wget https://paddle-inference-lib.bj.bcebos.com/2.2.2/cxx_c/Linux/GPU/x86-64_gcc8.2_avx_mkl_cuda11.2_cudnn8.1.1_trt7.2.3.4/paddle_inference.tgz
tar -xzvf paddle_inference.tgz
sudo cp -r paddle_inference /usr/local/
4. 项目安装方式
- 克隆项目到本地:
git clone https://github.com/sherlockchou86/video_pipe_c.git
cd video_pipe_c
- 创建并进入构建目录:
mkdir build
cd build
- 配置并编译项目:
cmake ..
make -j8
- 可选:启用 CUDA 和 TensorRT 模块:
cmake -DVP_WITH_CUDA=ON -DVP_WITH_TRT=ON ..
make -j8
5. 项目处理脚本
以下是一个简单的示例脚本,用于运行 VideoPipe 中的一个示例:
#include "vp_nodes/vp_file_src_node.h"
#include "vp_nodes/infers/vp_yunet_face_detector_node.h"
#include "vp_nodes/infers/vp_sface_feature_encoder_node.h"
#include "vp_nodes/osd/vp_face_osd_node_v2.h"
#include "vp_nodes/vp_screen_des_node.h"
#include "vp_nodes/vp_rtmp_des_node.h"
#include "vp_utils/analysis_board/vp_analysis_board.h"
int main() {
VP_SET_LOG_INCLUDE_CODE_LOCATION(false);
VP_SET_LOG_INCLUDE_THREAD_ID(false);
VP_LOGGER_INIT();
// 1. 创建节点
auto file_src_0 = std::make_shared<vp_nodes::vp_file_src_node>("file_src_0", 0, "/test_video/10.mp4", 0, 6);
// 2. 模型推理节点
auto yunet_face_detector = std::make_shared<vp_nodes::vp_yunet_face_detector_node>("yunet_face_detector", 0);
auto sface_feature_encoder = std::make_shared<vp_nodes::vp_sface_feature_encoder_node>("sface_feature_encoder", 0);
// 3. 创建 OSD 节点
auto face_osd = std::make_shared<vp_nodes::vp_face_osd_node_v2>("face_osd", 0);
// 4. 创建输出节点
auto screen_des = std::make_shared<vp_nodes::vp_screen_des_node>("screen_des", 0);
auto rtmp_des = std::make_shared<vp_nodes::vp_rtmp_des_node>("rtmp_des", 0, "rtmp://your_rtmp_server");
// 5. 连接节点
file_src_0->link(yunet_face_detector);
yunet_face_detector->link(sface_feature_encoder);
sface_feature_encoder->link(face_osd);
face_osd->link(screen_des);
face_osd->link(rtmp_des);
// 6. 运行管道
file_src_0->run();
return 0;
}
请确保更新代码中的文件路径和 RTMP 服务器地址。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210