LangGraph-101 开源项目最佳实践教程
2025-05-11 01:40:30作者:丁柯新Fawn
1. 项目介绍
LangGraph-101 是一个由 langchain-ai 团队开发的开源项目,旨在为自然语言处理(NLP)领域提供一个高效、灵活的工具集。该项目能够帮助开发者快速构建文本分析、信息提取和知识图谱等应用,同时支持多种语言处理任务,如文本分类、情感分析、实体识别等。
2. 项目快速启动
环境准备
在开始之前,确保你的系统中已安装以下依赖:
- Python 3.7 或更高版本
- Node.js 12 或更高版本
- Git
克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/langchain-ai/langgraph-101.git
cd langgraph-101
安装依赖
在项目根目录下,安装 Python 和 Node.js 的依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
npm install
运行示例
启动项目并查看示例输出:
# 启动服务
python server.py
# 在浏览器中访问 http://localhost:5000
3. 应用案例和最佳实践
文本分类
LangGraph-101 提供了文本分类的功能,以下是一个简单的示例:
from langgraph_101.classifier import TextClassifier
# 创建分类器实例
classifier = TextClassifier()
# 分类文本
text = "这篇文章讨论了最新的深度学习技术。"
category = classifier.classify(text)
print(f"文本分类结果:{category}")
信息提取
信息提取是另一个常见的应用场景,以下是一个实体识别的示例:
from langgraph_101.extractor import EntityExtractor
# 创建实体提取器实例
extractor = EntityExtractor()
# 提取文本中的实体
text = "乔布斯是苹果公司的创始人之一。"
entities = extractor.extract_entities(text)
print(f"文本中的实体:{entities}")
知识图谱构建
LangGraph-101 也支持知识图谱的构建,以下是一个构建简单知识图谱的示例:
from langgraph_101.knowledge_graph import KnowledgeGraph
# 创建知识图谱实例
kg = KnowledgeGraph()
# 添加实体和关系
kg.add_entity("实体1")
kg.add_entity("实体2")
kg.add_relationship("实体1", "关系1", "实体2")
# 输出知识图谱
print(kg.get_graph())
4. 典型生态项目
LangGraph-101 的生态系统中有许多典型的项目,以下是一些值得关注的:
- LangGraph-Web:一个基于 Web 的交互式界面,用于展示 LangGraph-101 的功能。
- LangGraph-SDK:用于在不同编程语言中集成 LangGraph-101 的软件开发工具包。
- LangGraph-Community:一个社区驱动的项目,旨在分享使用 LangGraph-101 的经验和案例。
通过这些典型项目,开发者可以更好地了解 LangGraph-101 的应用范围,并从中获取灵感以构建自己的应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
281
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100