LangGraph-101 开源项目最佳实践教程
2025-05-11 08:24:10作者:丁柯新Fawn
1. 项目介绍
LangGraph-101 是一个由 langchain-ai 团队开发的开源项目,旨在为自然语言处理(NLP)领域提供一个高效、灵活的工具集。该项目能够帮助开发者快速构建文本分析、信息提取和知识图谱等应用,同时支持多种语言处理任务,如文本分类、情感分析、实体识别等。
2. 项目快速启动
环境准备
在开始之前,确保你的系统中已安装以下依赖:
- Python 3.7 或更高版本
- Node.js 12 或更高版本
- Git
克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/langchain-ai/langgraph-101.git
cd langgraph-101
安装依赖
在项目根目录下,安装 Python 和 Node.js 的依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
npm install
运行示例
启动项目并查看示例输出:
# 启动服务
python server.py
# 在浏览器中访问 http://localhost:5000
3. 应用案例和最佳实践
文本分类
LangGraph-101 提供了文本分类的功能,以下是一个简单的示例:
from langgraph_101.classifier import TextClassifier
# 创建分类器实例
classifier = TextClassifier()
# 分类文本
text = "这篇文章讨论了最新的深度学习技术。"
category = classifier.classify(text)
print(f"文本分类结果:{category}")
信息提取
信息提取是另一个常见的应用场景,以下是一个实体识别的示例:
from langgraph_101.extractor import EntityExtractor
# 创建实体提取器实例
extractor = EntityExtractor()
# 提取文本中的实体
text = "乔布斯是苹果公司的创始人之一。"
entities = extractor.extract_entities(text)
print(f"文本中的实体:{entities}")
知识图谱构建
LangGraph-101 也支持知识图谱的构建,以下是一个构建简单知识图谱的示例:
from langgraph_101.knowledge_graph import KnowledgeGraph
# 创建知识图谱实例
kg = KnowledgeGraph()
# 添加实体和关系
kg.add_entity("实体1")
kg.add_entity("实体2")
kg.add_relationship("实体1", "关系1", "实体2")
# 输出知识图谱
print(kg.get_graph())
4. 典型生态项目
LangGraph-101 的生态系统中有许多典型的项目,以下是一些值得关注的:
- LangGraph-Web:一个基于 Web 的交互式界面,用于展示 LangGraph-101 的功能。
- LangGraph-SDK:用于在不同编程语言中集成 LangGraph-101 的软件开发工具包。
- LangGraph-Community:一个社区驱动的项目,旨在分享使用 LangGraph-101 的经验和案例。
通过这些典型项目,开发者可以更好地了解 LangGraph-101 的应用范围,并从中获取灵感以构建自己的应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881