LangGraph Agents with Amazon Bedrock 使用指南
1. 项目介绍
本项目是基于 AWS 的一个开源工作坊,旨在通过 LangGraph 框架和 Amazon Bedrock 的结合,探索最新的 AI 代理和代理工作流程。LangGraph 是一个用于实现具有循环图的代理的工具,它可以帮助创建更加结构化和可控的代理。通过本项目的教程,您将学习如何使用 Python 和大型语言模型(LLM)构建基础的 ReAct 代理,以及如何利用 LangGraph 的特性来增强代理的能力。
2. 项目快速启动
环境准备
-
确保您的系统安装了 Python 3.10 或更高版本。
-
使用 Git 克隆项目仓库:
git clone https://github.com/aws-samples/langgraph-agents-with-amazon-bedrock.git -
安装操作系统依赖(以 Ubuntu/Debian 为例):
sudo apt update sudo apt-get install graphviz graphviz-dev python3-dev pip install pipx pipx install poetry pipx ensurepath source ~/.bashrc -
创建虚拟环境并安装 Python 依赖:
cd langgraph-agents-with-amazon-bedrock export POETRY_VIRTUALENVS_PATH="$PWD/.venv" export INITIAL_WORKING_DIRECTORY=$(pwd) poetry shell cd $INITIAL_WORKING_DIRECTORY poetry install -
将新创建的 Python 环境添加到 Jupyter Notebook 服务器可用的内核列表中:
poetry run python -m ipykernel install --user --name agents-dev-env -
创建并设置您的 Tavily API 密钥。前往 Tavily 创建一个免费的 API 密钥。
-
设置本地环境变量。创建一个
.env文件,并将 Tavily API 密钥复制到该文件中。您也可以选择将密钥存储在 AWS Secrets Manager 中。
运行示例
克隆仓库并设置环境后,您可以开始运行示例代码。在项目的根目录中,您会找到多个 Jupyter Notebook 文件(以 Lab_1, Lab_2 等命名),这些文件包含了不同的实验和示例。
打开一个 Notebook 文件,选择 agents-dev-env 内核,然后运行代码块以查看结果。
3. 应用案例和最佳实践
案例一:构建基础 ReAct 代理
通过 Lab 1 的 Notebook,您将学习如何从零开始构建一个基础的 ReAct 代理。这个代理将使用 Python 和 LLM 来实施一个推理和行动的循环,以完成任务。
最佳实践:利用 LangGraph 进行复杂行为建模
LangGraph 允许开发者通过创建节点和边来构建复杂的代理行为。在 Lab 2 到 Lab 6 的 Notebook 中,您将学习如何使用 LangGraph 的组件来创建更加结构化的代理。
4. 典型生态项目
本项目是基于 AWS 的开源项目,它利用了 Amazon Bedrock 提供的基础设施和工具。典型的生态项目包括但不限于:
- 使用 AWS SageMaker 进行模型训练和部署。
- 集成 AWS Secrets Manager 以安全地管理 API 密钥和其他敏感信息。
- 利用 AWS 的高级安全功能来保护代码和资源。
通过本项目的实践,您可以深入了解如何在实际应用中集成和使用这些 AWS 服务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00