LangGraph Agents with Amazon Bedrock 使用指南
1. 项目介绍
本项目是基于 AWS 的一个开源工作坊,旨在通过 LangGraph 框架和 Amazon Bedrock 的结合,探索最新的 AI 代理和代理工作流程。LangGraph 是一个用于实现具有循环图的代理的工具,它可以帮助创建更加结构化和可控的代理。通过本项目的教程,您将学习如何使用 Python 和大型语言模型(LLM)构建基础的 ReAct 代理,以及如何利用 LangGraph 的特性来增强代理的能力。
2. 项目快速启动
环境准备
-
确保您的系统安装了 Python 3.10 或更高版本。
-
使用 Git 克隆项目仓库:
git clone https://github.com/aws-samples/langgraph-agents-with-amazon-bedrock.git -
安装操作系统依赖(以 Ubuntu/Debian 为例):
sudo apt update sudo apt-get install graphviz graphviz-dev python3-dev pip install pipx pipx install poetry pipx ensurepath source ~/.bashrc -
创建虚拟环境并安装 Python 依赖:
cd langgraph-agents-with-amazon-bedrock export POETRY_VIRTUALENVS_PATH="$PWD/.venv" export INITIAL_WORKING_DIRECTORY=$(pwd) poetry shell cd $INITIAL_WORKING_DIRECTORY poetry install -
将新创建的 Python 环境添加到 Jupyter Notebook 服务器可用的内核列表中:
poetry run python -m ipykernel install --user --name agents-dev-env -
创建并设置您的 Tavily API 密钥。前往 Tavily 创建一个免费的 API 密钥。
-
设置本地环境变量。创建一个
.env文件,并将 Tavily API 密钥复制到该文件中。您也可以选择将密钥存储在 AWS Secrets Manager 中。
运行示例
克隆仓库并设置环境后,您可以开始运行示例代码。在项目的根目录中,您会找到多个 Jupyter Notebook 文件(以 Lab_1, Lab_2 等命名),这些文件包含了不同的实验和示例。
打开一个 Notebook 文件,选择 agents-dev-env 内核,然后运行代码块以查看结果。
3. 应用案例和最佳实践
案例一:构建基础 ReAct 代理
通过 Lab 1 的 Notebook,您将学习如何从零开始构建一个基础的 ReAct 代理。这个代理将使用 Python 和 LLM 来实施一个推理和行动的循环,以完成任务。
最佳实践:利用 LangGraph 进行复杂行为建模
LangGraph 允许开发者通过创建节点和边来构建复杂的代理行为。在 Lab 2 到 Lab 6 的 Notebook 中,您将学习如何使用 LangGraph 的组件来创建更加结构化的代理。
4. 典型生态项目
本项目是基于 AWS 的开源项目,它利用了 Amazon Bedrock 提供的基础设施和工具。典型的生态项目包括但不限于:
- 使用 AWS SageMaker 进行模型训练和部署。
- 集成 AWS Secrets Manager 以安全地管理 API 密钥和其他敏感信息。
- 利用 AWS 的高级安全功能来保护代码和资源。
通过本项目的实践,您可以深入了解如何在实际应用中集成和使用这些 AWS 服务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00