KTransformers项目对DeepSeek-V3大模型的支持进展与技术解析
KTransformers作为一款高效的大语言模型推理框架,近期在社区中引发了关于支持DeepSeek-V3 680B大模型的广泛讨论。这款由中国团队开发的超大规模语言模型因其6800亿参数的庞大体量和创新的架构设计,在技术社区中备受关注。
DeepSeek-V3采用了混合专家(MoE)架构,这种设计通过动态激活部分参数来实现高效推理。根据技术报告,该模型包含128个专家模块,每个token仅激活其中的2个专家,这种稀疏激活机制理论上可以大幅降低计算资源需求。然而,6800亿参数的总规模仍然对硬件资源提出了极高要求。
在技术实现层面,KTransformers框架基于llama.cpp的早期版本(约6个月前的提交)构建其核心推理引擎。要支持DeepSeek-V3,需要解决三个关键环节的技术适配:首先需要HuggingFace Transformers库提供官方的模型架构支持;其次需要llama.cpp完成底层推理优化;最后才是KTransformers框架层面的集成工作。
目前,HuggingFace团队已经在Transformers库中提交了DeepSeek-V3的官方支持代码,这为后续工作奠定了基础。llama.cpp社区也取得了突破性进展,开发者们找到了一种优雅的解决方案来处理DeepSeek-V3的特殊架构。KTransformers项目维护者Azure-Tang表示,虽然技术实现相对直接,但面临的主要挑战是资源需求——即使用Q4KM量化后的模型,仍需约400GB内存才能运行。
实际测试数据显示,在配备96GB显存和256GB内存的系统上,可以勉强运行Q3_KM量化的DeepSeek-V3模型,而Q4_KM版本则需要更大资源。有社区成员报告,在768GB内存的工作站上,使用llama.cpp运行Q4_KM和Q5量化的DeepSeek-V3/R1模型获得了不错的体验,生成速度可达约3.8 tokens/秒。
值得注意的是,DeepSeek-V3采用了多token预测(MTP)技术,这种设计允许模型同时预测多个token,其中后续token可用于自推测解码(self-speculative decoding),据论文称使用2-token MTP可获得90%的命中率。这种创新技术减少了对额外小模型进行推测解码的需求,提高了推理效率。
项目维护者正在积极解决最后的精度问题,预计很快将发布正式支持版本。对于资源有限的用户,社区建议考虑使用DeepSeek-R1的动态1.58-bit量化方案,这可能是更实际的选择。随着这些技术突破,KTransformers框架将能为研究者和开发者提供更强大的大模型推理能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01