Hyperf链路追踪中实现请求过滤的技术方案
2025-06-02 10:17:39作者:秋泉律Samson
概述
在分布式系统开发中,链路追踪是监控和诊断系统性能问题的重要工具。Hyperf框架内置了基于Zipkin的链路追踪功能,但在实际应用中,我们经常需要对某些特定的请求进行过滤,避免不必要的追踪数据干扰分析结果。本文将详细介绍在Hyperf框架中如何实现链路追踪的请求过滤功能。
为什么需要过滤特定请求
在Web应用中,存在一些对系统分析无意义的请求,例如:
- 浏览器自动请求的favicon.ico图标文件
- 健康检查接口
- 静态资源请求
- 某些高频但业务价值低的API调用
这些请求如果全部记录到链路追踪系统中,不仅会增加存储负担,还会干扰我们对关键业务路径的分析。因此,实现请求过滤功能是优化链路追踪系统的必要手段。
Hyperf中的采样器机制
Hyperf的链路追踪系统基于OpenTracing标准实现,支持通过采样器(Sampler)来控制哪些请求需要被追踪。采样器是实现Zipkin\Sampler接口的类,它决定了是否对当前请求进行采样记录。
框架默认提供了几种采样器:
- AlwaysSampleSampler:总是采样
- NeverSampleSampler:从不采样
- PercentageSampler:按百分比采样
自定义采样器实现请求过滤
要实现基于请求特征的过滤,我们需要创建自定义采样器。以下是实现步骤:
1. 创建自定义采样器类
<?php
namespace App\Tracer\Sampler;
use Hyperf\Context\Context;
use Hyperf\HttpServer\Router\Dispatched;
use Zipkin\Sampler;
class CustomSampler implements Sampler
{
public function isSampled($traceId): bool
{
// 获取当前请求的路径信息
$dispatched = Context::get(Dispatched::class);
$path = $dispatched->handler->route ?? '';
// 定义需要过滤的路径
$excludedPaths = [
'/favicon.ico',
'/health',
// 添加其他需要过滤的路径
];
// 如果请求路径在排除列表中,则不采样
if (in_array($path, $excludedPaths)) {
return false;
}
// 默认采样
return true;
}
}
2. 配置自定义采样器
在Hyperf的配置文件中启用自定义采样器:
// config/autoload/opentracing.php
return [
'default' => env('OPENTRACING_DRIVER', 'zipkin'),
'enable' => [
'guzzle' => env('OPENTRACING_ENABLE_GUZZLE', false),
'redis' => env('OPENTRACING_ENABLE_REDIS', false),
'db' => env('OPENTRACING_ENABLE_DB', false),
'method' => env('OPENTRACING_ENABLE_METHOD', false),
],
'zipkin' => [
'app' => [
'name' => env('APP_NAME', 'skeleton'),
// IPv4 or IPv6 hostname or IP address
'ipv4' => '127.0.0.1',
'ipv6' => null,
'port' => 9501,
],
'options' => [
'endpoint_url' => env('ZIPKIN_ENDPOINT_URL', 'http://localhost:9411/api/v2/spans'),
'timeout' => env('ZIPKIN_TIMEOUT', 1),
],
'sampler' => \App\Tracer\Sampler\CustomSampler::class,
],
];
高级过滤策略
除了简单的路径匹配外,我们还可以实现更复杂的过滤逻辑:
1. 基于请求方法的过滤
public function isSampled($traceId): bool
{
$request = Context::get(\Hyperf\HttpMessage\Server\Request::class);
$method = $request->getMethod();
// 过滤OPTIONS方法请求
if ($method === 'OPTIONS') {
return false;
}
return true;
}
2. 基于用户代理的过滤
public function isSampled($traceId): bool
{
$request = Context::get(\Hyperf\HttpMessage\Server\Request::class);
$userAgent = $request->header('user-agent', '');
// 过滤爬虫请求
if (strpos($userAgent, 'bot') !== false ||
strpos($userAgent, 'spider') !== false) {
return false;
}
return true;
}
3. 组合多种条件的过滤
public function isSampled($traceId): bool
{
$request = Context::get(\Hyperf\HttpMessage\Server\Request::class);
$dispatched = Context::get(Dispatched::class);
$path = $dispatched->handler->route ?? '';
$method = $request->getMethod();
// 定义过滤规则
$rules = [
['path' => '/favicon.ico', 'method' => null], // 所有方法的favicon请求
['path' => '/health', 'method' => 'GET'], // 仅GET方法的健康检查
['path' => '/metrics', 'method' => null], // 所有监控指标请求
];
foreach ($rules as $rule) {
if ($path === $rule['path'] &&
($rule['method'] === null || $method === $rule['method'])) {
return false;
}
}
return true;
}
性能考虑
在实现自定义采样器时,需要注意以下几点以保证性能:
- 避免复杂计算:采样器的isSampled方法会在每个请求开始时调用,应保持简单高效
- 使用缓存:对于频繁匹配的规则,可以考虑使用缓存优化
- 减少依赖注入:尽量使用Context获取请求信息,避免依赖注入带来的开销
测试与验证
实现自定义采样器后,需要进行充分测试:
- 验证过滤规则是否按预期工作
- 检查被过滤的请求确实没有出现在链路追踪系统中
- 确认关键业务请求都被正确记录
- 监控系统性能,确保采样器没有引入明显延迟
总结
通过自定义采样器实现链路追踪的请求过滤,可以显著提高追踪数据的质量和分析效率。Hyperf框架的OpenTracing集成提供了灵活的扩展点,开发者可以根据实际业务需求实现各种复杂的过滤策略。合理配置请求过滤不仅能减少存储开销,还能让开发者更专注于分析核心业务路径的性能问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5