Google Generative AI Python SDK 中模型微调功能的使用指南
2025-07-03 19:46:51作者:郦嵘贵Just
概述
在使用Google Generative AI Python SDK进行模型微调时,开发者可能会遇到导入错误的问题。本文将详细介绍如何正确使用SDK中的模型微调功能,帮助开发者避免常见错误并顺利完成模型调优。
正确的导入方式
在Python代码中,要使用Google Generative AI SDK的模型微调功能,必须正确导入相关模块。常见的错误是直接使用from genai import...
,这会导致导入失败,因为正确的包名是google.generativeai
。
正确的导入方式应该是:
from google.generativeai import create_tuned_model, GenerativeModel
完整使用流程
1. 安装和配置
首先确保已安装最新版本的SDK:
pip install -q -U google-generativeai
然后配置API密钥:
import os
import google.generativeai as genai
genai.configure(api_key=os.environ["API_KEY"])
2. 准备训练数据
训练数据需要以特定格式准备,通常包含输入和预期的输出。例如对于问题类型分类任务,数据格式可能如下:
import pandas as pd
# 读取并预处理数据
df = pd.read_csv("datasets/Question-Types.csv", header=None, names=["RawData"], skiprows=1)
df[['Question', 'Question Type']] = df['RawData'].str.split(';', n=1, expand=True)
df = df.drop(columns=['RawData'])
3. 设置模型微调参数
使用create_tuned_model
函数配置微调参数:
base_model = "models/gemini-1.5-flash-001-tuning"
operation = genai.create_tuned_model(
display_name="increment", # 自定义模型名称
source_model=base_model, # 基础模型
epoch_count=20, # 训练轮数
batch_size=4, # 批量大小
learning_rate=0.001, # 学习率
training_data=df, # 训练数据
)
4. 监控训练过程
可以通过以下方式监控训练进度:
import time
for status in operation.wait_bar():
time.sleep(10) # 每10秒检查一次状态
5. 获取并使用微调后的模型
训练完成后,可以获取结果并使用新模型:
# 获取训练结果
result = operation.result()
print(result)
# 使用微调后的模型生成内容
tuned_model = genai.GenerativeModel(model_name=result.name)
generated_result = tuned_model.generate_content("Negative Factual Information Question")
print(generated_result.text)
常见问题解决
-
导入错误:确保使用完整的包名
google.generativeai
而非genai
-
认证问题:在调用API前必须配置有效的API密钥
-
数据格式问题:训练数据必须包含输入和预期输出两列
-
资源限制:微调可能需要较长时间,确保有足够的配额和耐心等待
性能优化建议
-
从小批量开始测试,确认效果后再增加epoch数量
-
监控损失曲线,适时调整学习率
-
对于大型数据集,考虑使用更大的batch_size以提高训练效率
-
保存训练过程中的检查点,防止意外中断
通过遵循上述指南,开发者可以充分利用Google Generative AI Python SDK的模型微调功能,为特定任务创建定制化的生成模型。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8