Google Generative AI Python SDK 中模型微调功能的使用指南
2025-07-03 07:46:58作者:郦嵘贵Just
概述
在使用Google Generative AI Python SDK进行模型微调时,开发者可能会遇到导入错误的问题。本文将详细介绍如何正确使用SDK中的模型微调功能,帮助开发者避免常见错误并顺利完成模型调优。
正确的导入方式
在Python代码中,要使用Google Generative AI SDK的模型微调功能,必须正确导入相关模块。常见的错误是直接使用from genai import...,这会导致导入失败,因为正确的包名是google.generativeai。
正确的导入方式应该是:
from google.generativeai import create_tuned_model, GenerativeModel
完整使用流程
1. 安装和配置
首先确保已安装最新版本的SDK:
pip install -q -U google-generativeai
然后配置API密钥:
import os
import google.generativeai as genai
genai.configure(api_key=os.environ["API_KEY"])
2. 准备训练数据
训练数据需要以特定格式准备,通常包含输入和预期的输出。例如对于问题类型分类任务,数据格式可能如下:
import pandas as pd
# 读取并预处理数据
df = pd.read_csv("datasets/Question-Types.csv", header=None, names=["RawData"], skiprows=1)
df[['Question', 'Question Type']] = df['RawData'].str.split(';', n=1, expand=True)
df = df.drop(columns=['RawData'])
3. 设置模型微调参数
使用create_tuned_model函数配置微调参数:
base_model = "models/gemini-1.5-flash-001-tuning"
operation = genai.create_tuned_model(
display_name="increment", # 自定义模型名称
source_model=base_model, # 基础模型
epoch_count=20, # 训练轮数
batch_size=4, # 批量大小
learning_rate=0.001, # 学习率
training_data=df, # 训练数据
)
4. 监控训练过程
可以通过以下方式监控训练进度:
import time
for status in operation.wait_bar():
time.sleep(10) # 每10秒检查一次状态
5. 获取并使用微调后的模型
训练完成后,可以获取结果并使用新模型:
# 获取训练结果
result = operation.result()
print(result)
# 使用微调后的模型生成内容
tuned_model = genai.GenerativeModel(model_name=result.name)
generated_result = tuned_model.generate_content("Negative Factual Information Question")
print(generated_result.text)
常见问题解决
-
导入错误:确保使用完整的包名
google.generativeai而非genai -
认证问题:在调用API前必须配置有效的API密钥
-
数据格式问题:训练数据必须包含输入和预期输出两列
-
资源限制:微调可能需要较长时间,确保有足够的配额和耐心等待
性能优化建议
-
从小批量开始测试,确认效果后再增加epoch数量
-
监控损失曲线,适时调整学习率
-
对于大型数据集,考虑使用更大的batch_size以提高训练效率
-
保存训练过程中的检查点,防止意外中断
通过遵循上述指南,开发者可以充分利用Google Generative AI Python SDK的模型微调功能,为特定任务创建定制化的生成模型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217