Google Generative AI Python SDK 中模型微调功能的使用指南
2025-07-03 19:46:51作者:郦嵘贵Just
概述
在使用Google Generative AI Python SDK进行模型微调时,开发者可能会遇到导入错误的问题。本文将详细介绍如何正确使用SDK中的模型微调功能,帮助开发者避免常见错误并顺利完成模型调优。
正确的导入方式
在Python代码中,要使用Google Generative AI SDK的模型微调功能,必须正确导入相关模块。常见的错误是直接使用from genai import...
,这会导致导入失败,因为正确的包名是google.generativeai
。
正确的导入方式应该是:
from google.generativeai import create_tuned_model, GenerativeModel
完整使用流程
1. 安装和配置
首先确保已安装最新版本的SDK:
pip install -q -U google-generativeai
然后配置API密钥:
import os
import google.generativeai as genai
genai.configure(api_key=os.environ["API_KEY"])
2. 准备训练数据
训练数据需要以特定格式准备,通常包含输入和预期的输出。例如对于问题类型分类任务,数据格式可能如下:
import pandas as pd
# 读取并预处理数据
df = pd.read_csv("datasets/Question-Types.csv", header=None, names=["RawData"], skiprows=1)
df[['Question', 'Question Type']] = df['RawData'].str.split(';', n=1, expand=True)
df = df.drop(columns=['RawData'])
3. 设置模型微调参数
使用create_tuned_model
函数配置微调参数:
base_model = "models/gemini-1.5-flash-001-tuning"
operation = genai.create_tuned_model(
display_name="increment", # 自定义模型名称
source_model=base_model, # 基础模型
epoch_count=20, # 训练轮数
batch_size=4, # 批量大小
learning_rate=0.001, # 学习率
training_data=df, # 训练数据
)
4. 监控训练过程
可以通过以下方式监控训练进度:
import time
for status in operation.wait_bar():
time.sleep(10) # 每10秒检查一次状态
5. 获取并使用微调后的模型
训练完成后,可以获取结果并使用新模型:
# 获取训练结果
result = operation.result()
print(result)
# 使用微调后的模型生成内容
tuned_model = genai.GenerativeModel(model_name=result.name)
generated_result = tuned_model.generate_content("Negative Factual Information Question")
print(generated_result.text)
常见问题解决
-
导入错误:确保使用完整的包名
google.generativeai
而非genai
-
认证问题:在调用API前必须配置有效的API密钥
-
数据格式问题:训练数据必须包含输入和预期输出两列
-
资源限制:微调可能需要较长时间,确保有足够的配额和耐心等待
性能优化建议
-
从小批量开始测试,确认效果后再增加epoch数量
-
监控损失曲线,适时调整学习率
-
对于大型数据集,考虑使用更大的batch_size以提高训练效率
-
保存训练过程中的检查点,防止意外中断
通过遵循上述指南,开发者可以充分利用Google Generative AI Python SDK的模型微调功能,为特定任务创建定制化的生成模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5