Apache Beam 开源项目下载与安装教程
2024-11-29 12:00:40作者:羿妍玫Ivan
Apache Beam 是一个统一编程模型,用于批处理和流数据处理。它提供了一种通用的方法来表达数据并行处理管道,并且支持多种语言特定的 SDK,用于构建管道,以及多种分布式处理后端的运行器。
1. 项目介绍
Apache Beam 支持定义批处理和流数据并行处理管道的统一模型,以及一组特定语言的 SDK,用于构建管道,以及在不同分布式处理后端上执行它们的运行器。它支持 Java、Python 和 Go 等语言,并且可以在 Apache Flink、Apache Spark、Google Cloud Dataflow 和 Hazelcast Jet 等后端上运行。
2. 项目下载位置
项目托管在 GitHub 上,您可以通过以下命令克隆项目:
git clone https://github.com/apache/beam.git
3. 项目安装环境配置
在开始安装之前,请确保您的环境中已经安装了以下依赖:
- JDK 1.8 或更高版本
- Maven 3.5.4 或更高版本
- Python 2.7 或 Python 3.5 及以上版本(如果使用 Python SDK)
- Go 1.11 或更高版本(如果使用 Go SDK)
以下是环境配置的示例图片:
图 1:JDK 安装验证
图 2:Maven 安装验证
4. 项目安装方式
以下是使用 Maven 构建和安装 Apache Beam 的步骤:
# 进入项目目录
cd beam
# 构建项目
mvn clean install -DskipTests
# 如果需要构建所有模块,可以使用以下命令
mvn clean install -DskipTests -Pall
构建完成后,所有模块的 JAR 文件将被安装到本地 Maven 仓库中。
5. 项目处理脚本
以下是使用 Apache Beam 进行数据处理的简单示例脚本:
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.values.PCollection;
public class WordCount {
public static void main(String[] args) {
Pipeline p = Pipeline.create();
PCollection<String> lines = p.apply(TextIO.read().from("input.txt"));
PCollection<String> words = lines.apply(
MapElements.via(new SimpleFunction<String, String>() {
@Override
public String apply(String line) {
return line;
}
}));
PCollection<String> wordCounts = words.apply(
MapElements.via(new SimpleFunction<String, String>() {
@Override
public String apply(String word) {
return word;
}
}));
wordCounts.apply(TextIO.write().to("output.txt"));
p.run().waitUntilFinish();
}
}
该脚本读取文本文件,将每一行作为单词,然后输出每个单词。请注意,这是一个简化的示例,实际使用时需要根据具体需求进行调整。
以上就是 Apache Beam 的下载与安装教程。希望这篇教程能够帮助您顺利开始使用 Apache Beam 进行数据处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.69 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
165
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
228
仓颉编译器源码及 cjdb 调试工具。
C++
123
664
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
72
仓颉编程语言测试用例。
Cangjie
36
665