Apache Beam 开源项目下载与安装教程
2024-11-29 15:32:32作者:羿妍玫Ivan
Apache Beam 是一个统一编程模型,用于批处理和流数据处理。它提供了一种通用的方法来表达数据并行处理管道,并且支持多种语言特定的 SDK,用于构建管道,以及多种分布式处理后端的运行器。
1. 项目介绍
Apache Beam 支持定义批处理和流数据并行处理管道的统一模型,以及一组特定语言的 SDK,用于构建管道,以及在不同分布式处理后端上执行它们的运行器。它支持 Java、Python 和 Go 等语言,并且可以在 Apache Flink、Apache Spark、Google Cloud Dataflow 和 Hazelcast Jet 等后端上运行。
2. 项目下载位置
项目托管在 GitHub 上,您可以通过以下命令克隆项目:
git clone https://github.com/apache/beam.git
3. 项目安装环境配置
在开始安装之前,请确保您的环境中已经安装了以下依赖:
- JDK 1.8 或更高版本
- Maven 3.5.4 或更高版本
- Python 2.7 或 Python 3.5 及以上版本(如果使用 Python SDK)
- Go 1.11 或更高版本(如果使用 Go SDK)
以下是环境配置的示例图片:
图 1:JDK 安装验证
图 2:Maven 安装验证
4. 项目安装方式
以下是使用 Maven 构建和安装 Apache Beam 的步骤:
# 进入项目目录
cd beam
# 构建项目
mvn clean install -DskipTests
# 如果需要构建所有模块,可以使用以下命令
mvn clean install -DskipTests -Pall
构建完成后,所有模块的 JAR 文件将被安装到本地 Maven 仓库中。
5. 项目处理脚本
以下是使用 Apache Beam 进行数据处理的简单示例脚本:
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.values.PCollection;
public class WordCount {
public static void main(String[] args) {
Pipeline p = Pipeline.create();
PCollection<String> lines = p.apply(TextIO.read().from("input.txt"));
PCollection<String> words = lines.apply(
MapElements.via(new SimpleFunction<String, String>() {
@Override
public String apply(String line) {
return line;
}
}));
PCollection<String> wordCounts = words.apply(
MapElements.via(new SimpleFunction<String, String>() {
@Override
public String apply(String word) {
return word;
}
}));
wordCounts.apply(TextIO.write().to("output.txt"));
p.run().waitUntilFinish();
}
}
该脚本读取文本文件,将每一行作为单词,然后输出每个单词。请注意,这是一个简化的示例,实际使用时需要根据具体需求进行调整。
以上就是 Apache Beam 的下载与安装教程。希望这篇教程能够帮助您顺利开始使用 Apache Beam 进行数据处理。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695