AzureML-examples 项目:使用SDK创建自定义Spark预处理组件
2025-07-07 01:28:19作者:柏廷章Berta
概述
在Azure机器学习平台中,数据预处理是模型监控流程中不可或缺的一环。本文将详细介绍如何在AzureML-examples项目中,使用Python SDK而非YAML文件来创建自定义Spark预处理组件,实现更安全、更易维护的组件开发方式。
为什么选择SDK而非YAML
传统上,AzureML组件可以通过YAML文件定义,但这种方式存在几个明显缺点:
- 缺乏类型安全:YAML是纯文本格式,无法在开发阶段进行类型检查
- 与源代码分离:组件定义与实现逻辑分离,增加了维护难度
- 开发体验差:缺少IDE的智能提示和自动补全功能
相比之下,使用Python SDK定义组件可以充分利用现代开发工具的优势,提供更好的开发体验和代码可维护性。
创建Spark组件的基本方法
AzureML SDK提供了SparkComponent类来创建Spark组件。以下是创建Spark预处理组件的关键步骤:
- 首先导入必要的类:
from azure.ai.ml.entities import SparkComponent
- 定义组件的基本属性:
spark_component = SparkComponent(
name="custom_preprocessor",
display_name="Custom Data Preprocessor",
description="Custom component for preprocessing data before monitoring",
version="1.0.0",
# 其他配置参数...
)
- 配置Spark运行环境:
spark_component.environment = "azureml:my-spark-environment:1"
spark_component.resources = {
"instance_type": "standard_e4s_v3",
"runtime_version": "3.2"
}
- 定义输入输出:
spark_component.inputs = {
"input_data": Input(type="uri_folder"),
"data_window_start": Input(type="string"),
"data_window_end": Input(type="string")
}
spark_component.outputs = {
"preprocessed_data": Output(type="mltable")
}
组件注册与使用
创建组件后,需要将其注册到工作区:
ml_client.components.create_or_update(spark_component)
注册成功后,可以在监控管道中引用该组件:
reference_data = ReferenceData(
input_data=Input(type="uri_folder", path="azureml:my_data:1"),
data_context=MonitorDatasetContext.MODEL_INPUTS,
pre_processing_component="azureml:custom_preprocessor:1.0.0",
data_window=BaselineDataRange(
lookback_window_offset="P0D",
lookback_window_size="P10D"
)
)
常见问题与解决方案
在实际使用中,开发者可能会遇到以下问题:
-
输出参数错误:确保在组件定义中正确指定输出类型,如
Output(type="mltable", mode="direct") -
数据窗口配置:对于动态变化的数据,必须指定
data_window参数,否则系统会将其视为静态数据 -
环境依赖:Spark组件需要特定的运行环境,确保正确配置Spark版本和依赖项
最佳实践建议
-
版本控制:使用
auto_increment_version=True自动管理组件版本 -
代码组织:将组件逻辑与定义分离,保持代码整洁
-
错误处理:在预处理逻辑中添加充分的错误处理和日志记录
-
性能优化:对于大数据集,考虑使用分区和并行处理提高效率
总结
通过使用AzureML Python SDK创建Spark预处理组件,开发者可以获得更好的类型安全性和开发体验。这种方法不仅提高了代码的可维护性,还能更灵活地集成到现有的机器学习工作流中。本文介绍的方法可以应用于各种数据预处理场景,为模型监控提供可靠的数据准备基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248