AzureML-examples 项目:使用SDK创建自定义Spark预处理组件
2025-07-07 01:28:19作者:柏廷章Berta
概述
在Azure机器学习平台中,数据预处理是模型监控流程中不可或缺的一环。本文将详细介绍如何在AzureML-examples项目中,使用Python SDK而非YAML文件来创建自定义Spark预处理组件,实现更安全、更易维护的组件开发方式。
为什么选择SDK而非YAML
传统上,AzureML组件可以通过YAML文件定义,但这种方式存在几个明显缺点:
- 缺乏类型安全:YAML是纯文本格式,无法在开发阶段进行类型检查
- 与源代码分离:组件定义与实现逻辑分离,增加了维护难度
- 开发体验差:缺少IDE的智能提示和自动补全功能
相比之下,使用Python SDK定义组件可以充分利用现代开发工具的优势,提供更好的开发体验和代码可维护性。
创建Spark组件的基本方法
AzureML SDK提供了SparkComponent类来创建Spark组件。以下是创建Spark预处理组件的关键步骤:
- 首先导入必要的类:
from azure.ai.ml.entities import SparkComponent
- 定义组件的基本属性:
spark_component = SparkComponent(
name="custom_preprocessor",
display_name="Custom Data Preprocessor",
description="Custom component for preprocessing data before monitoring",
version="1.0.0",
# 其他配置参数...
)
- 配置Spark运行环境:
spark_component.environment = "azureml:my-spark-environment:1"
spark_component.resources = {
"instance_type": "standard_e4s_v3",
"runtime_version": "3.2"
}
- 定义输入输出:
spark_component.inputs = {
"input_data": Input(type="uri_folder"),
"data_window_start": Input(type="string"),
"data_window_end": Input(type="string")
}
spark_component.outputs = {
"preprocessed_data": Output(type="mltable")
}
组件注册与使用
创建组件后,需要将其注册到工作区:
ml_client.components.create_or_update(spark_component)
注册成功后,可以在监控管道中引用该组件:
reference_data = ReferenceData(
input_data=Input(type="uri_folder", path="azureml:my_data:1"),
data_context=MonitorDatasetContext.MODEL_INPUTS,
pre_processing_component="azureml:custom_preprocessor:1.0.0",
data_window=BaselineDataRange(
lookback_window_offset="P0D",
lookback_window_size="P10D"
)
)
常见问题与解决方案
在实际使用中,开发者可能会遇到以下问题:
-
输出参数错误:确保在组件定义中正确指定输出类型,如
Output(type="mltable", mode="direct") -
数据窗口配置:对于动态变化的数据,必须指定
data_window参数,否则系统会将其视为静态数据 -
环境依赖:Spark组件需要特定的运行环境,确保正确配置Spark版本和依赖项
最佳实践建议
-
版本控制:使用
auto_increment_version=True自动管理组件版本 -
代码组织:将组件逻辑与定义分离,保持代码整洁
-
错误处理:在预处理逻辑中添加充分的错误处理和日志记录
-
性能优化:对于大数据集,考虑使用分区和并行处理提高效率
总结
通过使用AzureML Python SDK创建Spark预处理组件,开发者可以获得更好的类型安全性和开发体验。这种方法不仅提高了代码的可维护性,还能更灵活地集成到现有的机器学习工作流中。本文介绍的方法可以应用于各种数据预处理场景,为模型监控提供可靠的数据准备基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178