DeepMath 项目使用教程
2025-04-18 03:54:12作者:范垣楠Rhoda
1. 项目介绍
DeepMath 是一个大规模、具有挑战性、经过净化处理和可验证的数学数据集,旨在推动语言模型的推理能力。该数据集包含了不同难度级别的数学问题,涵盖了代数、微积分、数论、几何、概率以及离散数学等多个学科领域,为研究者和开发者提供了一个丰富的资源。
2. 项目快速启动
环境准备
首先,需要克隆项目仓库并设置运行环境:
git clone --recurse-submodules https://github.com/zwhe99/DeepMath.git
cd DeepMath
conda create -y -n deepmath python=3.12.2
conda activate deepmath
安装依赖
接着,安装必要的依赖库:
pip3 install ray[default]
pip3 install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1
pip3 install flash-attn==2.7.4.post1 --no-build-isolation
pip3 install omegaconf==2.4.0.dev1 hydra-core==1.4.0.dev1 antlr4-python3-runtime==4.11.0 vllm==0.7.3
pip3 install math-verify[antlr4_11_0]==0.7.0 fire deepspeed tensorboardX prettytable datasets transformers==4.49.0
pip3 install -e verl
评估模型
启动一个模型评估的示例:
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 VLLM_ATTENTION_BACKEND=XFORMERS VLLM_USE_V1=1 VLLM_WORKER_MULTIPROC_METHOD=spawn python3 uni_eval.py \
--base_model zwhe99/DeepMath-Zero-7B \
--chat_template_name orz \
--system_prompt_name simplerl \
--output_dir \
--bf16 True \
--tensor_parallel_size 8 \
--data_id zwhe99/MATH \
--split math500 \
--max_model_len 32768 \
--temperature 0.6 \
--top_p 0.95 \
--n 16
训练模型
准备数据:
DATA_DIR=/path/to/your/data
python3 verl/examples/data_preprocess/deepmath_103k.py --local_dir $DATA_DIR
启动 Ray:
# Head node (×1)
ray start --head --port=6379 --node-ip-address=$HEAD_ADDR --num-gpus=8
# Worker nodes (×7)
ray start --address=$HEAD_ADDR:6379 --node-ip-address=$WORKER_ADDR --num-gpus=8
在 Head 节点上启动训练,具体训练脚本位于 scripts/train 目录下。
3. 应用案例和最佳实践
- 案例一:利用 DeepMath 数据集对数学解题模型进行微调,提升模型在数学问题上的解答能力。
- 案例二:结合强化学习,使用 DeepMath 数据集对模型进行推理能力训练。
4. 典型生态项目
目前,DeepMath 数据集已被用于多个相关研究项目,包括但不限于:
- 数学解题模型:如 DeepMath-Zero-7B 和 DeepMath-1.5B,这些模型在多个数学竞赛和实际应用中取得了优异的性能。
- 知识蒸馏:通过 DeepMath 数据集对已有模型进行知识蒸馏,提升其数学推理能力。
以上就是 DeepMath 项目的基本使用教程,希望通过这份文档,您能快速上手并开始您的数学推理研究。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137