TorchRec分布式嵌入训练中的梯度缩放问题分析
2025-07-04 17:28:11作者:鲍丁臣Ursa
问题背景
在分布式机器学习训练中,PyTorch的TorchRec库提供了一个高效的嵌入表实现。最近在使用TorchRec进行分布式嵌入训练时,发现了一个关于梯度计算的异常现象:当使用数据并行(DMP)进行行分片(row-wise sharding)时,传递给FBGEMM_GPU的数据梯度被错误地除以了world_size(世界大小,即GPU数量)。
问题现象
假设我们有以下配置:
- 使用2个GPU进行训练
- 嵌入表大小为8(8个嵌入向量)
- 嵌入维度为4
- 权重初始化为全零
- 使用SGD优化器,学习率设为1
在正向传播时,两个GPU分别处理不同的键(key):
- GPU0处理键[0,1]
- GPU1处理键[2,3]
反向传播时,每个GPU接收到的梯度本应是全0.5的矩阵,但实际观察到的梯度值却是0.25(即0.5/2)。这导致最终的权重更新结果与预期不符。
深入分析
通过注册反向传播钩子(backward hook),我们能够捕获到传递给FBGEMM_GPU的实际梯度值。实验发现:
- 梯度缩放与GPU数量直接相关:当使用4个GPU时,梯度被除以4(变为0.125)
- 这种现象与优化器类型无关(测试了SGD和Adam都出现同样问题)
- 问题发生在梯度传递给FBGEMM_GPU之前
技术影响
这种梯度缩放会导致以下问题:
- 权重更新不正确:由于梯度被错误缩放,模型参数更新幅度小于预期
- 训练效率降低:模型收敛速度变慢,可能需要更多训练轮次
- 结果不可预测:特别是当使用自适应优化器时,缩放梯度会影响动量等统计量的计算
解决方案
根据问题追踪,该问题已被修复。修复方案可能包括:
- 移除梯度缩放:确保梯度按原始值传递给FBGEMM_GPU
- 在优化器层面正确处理分布式梯度:确保梯度聚合逻辑正确
- 添加验证机制:在分布式训练中验证梯度值是否符合预期
最佳实践建议
对于使用TorchRec进行分布式嵌入训练的用户,建议:
- 验证梯度值:在关键点添加钩子检查梯度值
- 使用最新版本:确保使用的TorchRec版本已包含相关修复
- 监控训练过程:密切关注模型收敛情况和损失曲线
- 单元测试:为分布式训练场景编写专门的测试用例
总结
分布式训练中的梯度处理是一个复杂但关键的问题。TorchRec作为PyTorch生态中重要的推荐系统组件,其正确性直接影响模型训练效果。通过这个案例,我们了解到在分布式环境下,梯度处理需要特别小心,任何微小的数值差异都可能被放大,导致训练结果偏离预期。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.71 K
暂无简介
Dart
634
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
272
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
196
214