TorchRec分布式嵌入训练中的梯度缩放问题分析
2025-07-04 08:12:05作者:鲍丁臣Ursa
问题背景
在分布式机器学习训练中,PyTorch的TorchRec库提供了一个高效的嵌入表实现。最近在使用TorchRec进行分布式嵌入训练时,发现了一个关于梯度计算的异常现象:当使用数据并行(DMP)进行行分片(row-wise sharding)时,传递给FBGEMM_GPU的数据梯度被错误地除以了world_size(世界大小,即GPU数量)。
问题现象
假设我们有以下配置:
- 使用2个GPU进行训练
- 嵌入表大小为8(8个嵌入向量)
- 嵌入维度为4
- 权重初始化为全零
- 使用SGD优化器,学习率设为1
在正向传播时,两个GPU分别处理不同的键(key):
- GPU0处理键[0,1]
- GPU1处理键[2,3]
反向传播时,每个GPU接收到的梯度本应是全0.5的矩阵,但实际观察到的梯度值却是0.25(即0.5/2)。这导致最终的权重更新结果与预期不符。
深入分析
通过注册反向传播钩子(backward hook),我们能够捕获到传递给FBGEMM_GPU的实际梯度值。实验发现:
- 梯度缩放与GPU数量直接相关:当使用4个GPU时,梯度被除以4(变为0.125)
- 这种现象与优化器类型无关(测试了SGD和Adam都出现同样问题)
- 问题发生在梯度传递给FBGEMM_GPU之前
技术影响
这种梯度缩放会导致以下问题:
- 权重更新不正确:由于梯度被错误缩放,模型参数更新幅度小于预期
- 训练效率降低:模型收敛速度变慢,可能需要更多训练轮次
- 结果不可预测:特别是当使用自适应优化器时,缩放梯度会影响动量等统计量的计算
解决方案
根据问题追踪,该问题已被修复。修复方案可能包括:
- 移除梯度缩放:确保梯度按原始值传递给FBGEMM_GPU
- 在优化器层面正确处理分布式梯度:确保梯度聚合逻辑正确
- 添加验证机制:在分布式训练中验证梯度值是否符合预期
最佳实践建议
对于使用TorchRec进行分布式嵌入训练的用户,建议:
- 验证梯度值:在关键点添加钩子检查梯度值
- 使用最新版本:确保使用的TorchRec版本已包含相关修复
- 监控训练过程:密切关注模型收敛情况和损失曲线
- 单元测试:为分布式训练场景编写专门的测试用例
总结
分布式训练中的梯度处理是一个复杂但关键的问题。TorchRec作为PyTorch生态中重要的推荐系统组件,其正确性直接影响模型训练效果。通过这个案例,我们了解到在分布式环境下,梯度处理需要特别小心,任何微小的数值差异都可能被放大,导致训练结果偏离预期。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355