TorchRec分布式嵌入训练中的梯度缩放问题分析
2025-07-04 06:01:48作者:鲍丁臣Ursa
问题背景
在分布式机器学习训练中,PyTorch的TorchRec库提供了一个高效的嵌入表实现。最近在使用TorchRec进行分布式嵌入训练时,发现了一个关于梯度计算的异常现象:当使用数据并行(DMP)进行行分片(row-wise sharding)时,传递给FBGEMM_GPU的数据梯度被错误地除以了world_size(世界大小,即GPU数量)。
问题现象
假设我们有以下配置:
- 使用2个GPU进行训练
- 嵌入表大小为8(8个嵌入向量)
- 嵌入维度为4
- 权重初始化为全零
- 使用SGD优化器,学习率设为1
在正向传播时,两个GPU分别处理不同的键(key):
- GPU0处理键[0,1]
- GPU1处理键[2,3]
反向传播时,每个GPU接收到的梯度本应是全0.5的矩阵,但实际观察到的梯度值却是0.25(即0.5/2)。这导致最终的权重更新结果与预期不符。
深入分析
通过注册反向传播钩子(backward hook),我们能够捕获到传递给FBGEMM_GPU的实际梯度值。实验发现:
- 梯度缩放与GPU数量直接相关:当使用4个GPU时,梯度被除以4(变为0.125)
- 这种现象与优化器类型无关(测试了SGD和Adam都出现同样问题)
- 问题发生在梯度传递给FBGEMM_GPU之前
技术影响
这种梯度缩放会导致以下问题:
- 权重更新不正确:由于梯度被错误缩放,模型参数更新幅度小于预期
- 训练效率降低:模型收敛速度变慢,可能需要更多训练轮次
- 结果不可预测:特别是当使用自适应优化器时,缩放梯度会影响动量等统计量的计算
解决方案
根据问题追踪,该问题已被修复。修复方案可能包括:
- 移除梯度缩放:确保梯度按原始值传递给FBGEMM_GPU
- 在优化器层面正确处理分布式梯度:确保梯度聚合逻辑正确
- 添加验证机制:在分布式训练中验证梯度值是否符合预期
最佳实践建议
对于使用TorchRec进行分布式嵌入训练的用户,建议:
- 验证梯度值:在关键点添加钩子检查梯度值
- 使用最新版本:确保使用的TorchRec版本已包含相关修复
- 监控训练过程:密切关注模型收敛情况和损失曲线
- 单元测试:为分布式训练场景编写专门的测试用例
总结
分布式训练中的梯度处理是一个复杂但关键的问题。TorchRec作为PyTorch生态中重要的推荐系统组件,其正确性直接影响模型训练效果。通过这个案例,我们了解到在分布式环境下,梯度处理需要特别小心,任何微小的数值差异都可能被放大,导致训练结果偏离预期。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133