TorchRec中自定义稀疏特征分片方案的技术实践
2025-07-04 18:22:27作者:宗隆裙
背景介绍
在分布式模型训练场景中,稀疏特征的处理是一个关键挑战。PyTorch生态中的TorchRec库提供了强大的分布式嵌入功能,允许用户对稀疏特征进行高效的分片和并行处理。本文将深入探讨如何通过TorchRec实现自定义的稀疏特征分片方案。
核心问题
在推荐系统等场景中,某些稀疏特征之间存在频繁的交互关系。例如,用户ID、用户历史行为和用户画像特征经常在模型中被联合使用。如果这些特征被分散在不同GPU上,会导致大量的跨设备通信开销。
解决方案
TorchRec提供了construct_module_sharding_planAPI,允许开发者精细控制各个嵌入表的分片方式。通过该API,我们可以将具有强关联性的特征强制分配到同一GPU设备上。
关键实现步骤
-
构建基础模型:首先创建包含EmbeddingBagCollection的标准模型结构
-
定义分片方案:使用
table_wise分片策略,明确指定每个嵌入表的目标设备
module_sharding_plan = construct_module_sharding_plan(
model.sparse_arch.embedding_bag_collection,
per_param_sharding={
"table_0": table_wise(rank=0),
"table_1": table_wise(rank=0),
"table_2": table_wise(rank=0),
"table_3": table_wise(rank=1),
"table_4": table_wise(rank=1),
},
)
- 分布式模型包装:将分片方案应用到DistributedModelParallel中
model = DistributedModelParallel(
module=model,
device=device,
plan=ShardingPlan({
"model.sparse_arch.embedding_bag_collection": module_sharding_plan
}),
)
注意事项
-
FBGEMM依赖:TorchRec底层依赖于FBGEMM库进行高效稀疏计算。若出现CUDA后端不支持的错误,需要确保正确安装FBGEMM的GPU版本。
-
性能权衡:虽然将关联特征放在同一设备能减少通信,但也可能导致负载不均衡。需要根据实际特征访问模式和模型结构进行权衡。
-
混合分片策略:可以结合使用table-wise和row-wise等不同分片策略,实现更灵活的特征分布。
最佳实践建议
- 对于频繁交互的特征组,采用相同的rank分配
- 对于大型稀疏特征,考虑使用row-wise分片以平衡内存
- 监控各GPU的内存使用和通信开销,持续优化分片方案
通过这种精细化的分片控制,开发者可以在分布式训练中获得更好的性能和扩展性,特别是在推荐系统、广告排序等稀疏特征密集的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134