Apache Gluten 1.4.0版本发布:多引擎统一加速框架的重大升级
Apache Gluten项目团队近日正式发布了1.4.0版本,这是这个多引擎统一加速框架的一个重要里程碑。作为Apache孵化器项目,Gluten旨在为大数据处理提供统一的跨引擎加速方案,通过向量化执行引擎显著提升Spark等计算框架的性能表现。
核心架构与技术亮点
Gluten 1.4.0版本在架构层面进行了多项重要改进。该版本继续强化了其作为中间层的核心定位,能够无缝对接不同后端执行引擎(如Velox和ClickHouse)与前端计算框架(如Spark)。这种解耦设计使得用户可以在不修改现有Spark应用代码的情况下,获得接近原生C++的执行性能。
在Spark版本支持方面,1.4.0版本全面兼容Spark 3.2.2、3.3.1、3.4.4和3.5.2,其中特别将3.4.x支持升级到了3.4.4版本。这种多版本兼容策略确保了企业用户可以在不同Spark环境中平滑迁移。
性能优化与功能增强
本次版本在查询性能方面做出了显著提升。其中最重要的改进包括:
-
Join操作优化:实现了BNLJ(Block Nested Loop Join)全外连接支持,大幅提升了复杂连接操作的执行效率。测试表明,在某些TPC-H查询场景下,性能提升可达30%以上。
-
Shuffle增强:对RSS(Remote Shuffle Service)ShuffleReader进行了深度优化,解决了多个关键性问题。新版本在shuffle阶段的稳定性和吞吐量都有明显改善,特别是在大规模数据集场景下。
-
动态资源调整:创新性地引入了Stage级别资源动态调整功能,系统现在可以根据查询执行情况智能调整各阶段的资源分配,显著提高了集群资源利用率。
-
内存管理改进:修复了多个未跟踪内存导致的OOM问题,增强了系统的稳定性。新的内存管理机制能够更精确地追踪和管控内存使用。
新增功能与扩展支持
1.4.0版本丰富了函数支持矩阵,新增了多个常用Spark函数的原生实现:
- 日期处理函数:date_format、make_date
- JSON处理:from_json、json_array_length
- 字符串操作:btrim
- 复杂类型处理:map_filter、map_concat、array_append
在数据湖支持方面,新版本加强了对Iceberg和Hudi的测试覆盖,为现代数据湖架构提供了更好的支持。特别是通过优化Parquet文件的读取逻辑,显著提升了在加密Parquet文件场景下的回退机制可靠性。
开发者体验与工具链改进
1.4.0版本带来了多项开发者友好特性:
-
查询追踪:新增的Query Trace功能让开发者能够深入分析查询执行过程,快速定位性能瓶颈。
-
资格验证工具:新引入的Qualification Tool帮助用户评估工作负载是否适合使用Gluten加速,降低了采用门槛。
-
Docker支持:更新了构建环境,提供基于CentOS 8的JDK 11和JDK 17镜像,简化了开发环境配置。
-
文档完善:大幅更新了技术文档,新增了Java/Scala调试指南、函数支持矩阵等实用内容。
生态系统整合
在生态系统整合方面,1.4.0版本将Celeborn升级到0.5.4,Uniffle升级到0.9.2,提供了更稳定可靠的shuffle服务。同时,Velox引擎代码库更新至2025年5月12日版本,获得了最新的性能优化和功能增强。
总结
Apache Gluten 1.4.0版本通过全面的性能优化、功能增强和稳定性提升,进一步巩固了其作为大数据加速中间件的领先地位。无论是对于希望提升现有Spark工作负载性能的企业用户,还是对于寻求统一加速方案的平台开发者,这个版本都提供了显著的价值。项目团队持续关注实际生产环境中的需求,通过社区驱动的方式不断推动技术创新,为大数据处理领域注入了新的活力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









