Agera 开源项目最佳实践教程
2025-04-24 13:41:31作者:鲍丁臣Ursa
1. 项目介绍
Agera 是由 Google 开发的一个轻量级、高效且易于使用的异步任务库。它旨在帮助开发者处理 Android 应用程序中的异步任务,如数据加载、网络请求等,而无需担心复杂的线程管理和回调地狱。Agera 使用简洁的 API,能够轻松地将异步操作的结果传递给 UI 线程,并且能够响应屏幕旋转等生命周期事件。
2. 项目快速启动
首先,确保你已经安装了 Android Studio 和必要的 Android SDK。以下是集成 Agera 到你的 Android 项目的步骤:
- 在你的项目根目录中的
build.gradle文件中添加 Agera 的依赖项:
dependencies {
// 其他依赖项...
implementation 'com.google.android.agera:agera:2.0.0'
}
-
同步你的项目依赖。
-
在你的应用代码中,你可以创建一个简单的 Agera 任务来执行异步操作。以下是一个例子:
import com.google.android.agera.Agera;
import com.google.android.agera.Function;
import com.google.android.agera.Matcher;
import com.google.android.agera.MutableRepository;
import com.google.android.agera.Repositories;
import com.google.android.agera.RepositoryConfig;
import com.google.android.agera.UpdateDispatcher;
import com.google.android.agera.Updatable;
public class MainActivity extends AppCompatActivity {
private MutableRepository<String, String> repository;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// 初始化 Agera 仓库
repository = Repositories.mutableRepository();
repository.addSource(new DataSource());
// 设置更新器,用于接收结果
repository.registerUpdateListener(new Updatable() {
@Override
public void update() {
// 获取异步操作的结果
String result = repository.get();
// 更新 UI,例如显示结果
findViewById(R.id.result).setText(result);
}
});
// 触发异步任务
repository.update();
}
private static class DataSource implements Function<String, String> {
@Override
public String apply(String input) {
// 执行异步操作,这里只是一个简单的字符串操作
return "异步任务结果:" + input;
}
}
}
3. 应用案例和最佳实践
案例一:网络请求
使用 Agera 进行网络请求时,你可以创建一个专门用于网络操作的 DataSource,并在其中处理异步逻辑。
public class NetworkDataSource implements Function<String, String> {
@Override
public String apply(String input) {
// 这里可以执行网络请求,并返回结果
return performNetworkRequest(input);
}
private String performNetworkRequest(String input) {
// 网络请求逻辑
return "网络请求结果";
}
}
最佳实践
- 保持 Agera 任务的简单性,每个任务只处理一个明确的逻辑。
- 对于复杂的异步流程,使用多个 Agera 任务并按需链接它们。
- 在适当的时候取消不必要的 Agera 任务以节省资源。
- 适当处理异常,确保应用的稳定性和用户体验。
4. 典型生态项目
Agera 虽然是一个独立的项目,但它可以与其他开源库协同工作,例如 Retrofit 进行网络请求、RxJava 进行复杂的异步操作等。开发者可以根据需要选择适合自己项目的生态项目,与 Agera 结合使用,以创建更加高效和稳定的应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868